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CHAPTER 1

Overview

PSAMM is an open source software that is designed for the curation and analysis of metabolic models. It supports
model version tracking, model annotation, data integration, data parsing and formatting, consistency checking, auto-
matic gap filling, and model simulations.

PSAMM is developed as an open source project, coordinated through Github. The PSAMM software is being devel-
oped in the Zhang Laboratory at the University of Rhode Island.

1.1 Citing PSAMM

If you use PSAMM in a publication, please cite:

Steffensen JL, Dufault-Thompson K, Zhang Y. PSAMM: A Portable System for the Analysis of Metabolic Models.
PLOS Comput Biol. Public Library of Science; 2016;12: e1004732. doi:10.1371/journal.pcbi.1004732.

1.2 Software license

PSAMM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http:
/Iwww.gnu.org/licenses/.



https://github.com/zhanglab/psamm
http://zhanglab.uri.edu/
https://doi.org/10.1371/journal.pcbi.1004732
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
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CHAPTER 2

PSAMM Tutorials

2.1 Installation and Materials

This tutorial will show you how to get PSAMM up and running on your computer, how to work with the PSAMM
YAML format, how to import published models into PSAMM, and how to apply the main tools included with PSAMM
to your models.

* Downloading the PSAMM Tutorial Data

e PSAMM Installation
e PSAMM Model Collection

2.1.1 Downloading the PSAMM Tutorial Data

The PSAMM tutorial materials are available in the psamm-tutorial GitHub repository

These files can be downloaded using the following command:

’$ git clone https://github.com/zhanglab/psamm—-tutorial.git ‘

This will create a directory named psamm—tutorial in your current working folder. You can then navigate to this
directory using the following command:

’$ cd psamm-tutorial ‘

Now you should be in the psamm-tutorial folder and should see the following folders:

additional_files/
E_coli_sbml/
E_coli_excel/
E_coli_json/
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These directories include all of the files that will be needed to run the tutorial.

2.1.2 PSAMM Installation

PSAMM can be installed using the Python package installer pip. We recommend that all installations be performed
under a virtual Python environment. Major programs and dependencies include: psamm-model, which supports
model checking, model simulation, and model exports; Linear programming (LP) solvers (e.g. CPLEX, Gurobi,
QSopt_ex), which provide the solution of linear programming problems; psamm—import, which supports the import
of models from SBML, JSON, and Excel formats.

Setting up a Virtual Python Environment (Virtualenv)

It is recommended that the PSAMM software and dependencies should be installed under a virtual Python environ-
ment. This can be done by using the Virtualenv software. Virtualenv will set up a Python environment that permits
you to install Python packages in a local directory that will not interfere with other programs in the global Python. The
virtual environment can be set up at any local directory that you have write permission to. For example, here we will
set up the virtual environment under the main directory of this PSAMM tutorial. First, run the following command if
you are not in the psamm—-tutorial folder:

’$ cd <PATH>/psamm-tutorial

In this command, <PATH> should be substituted by the directory path to where you created the psamm-tutorial.
This will change your current directory to the psamm-tutorial directory. Then, you can create a virtual environ-
ment for Python 2 in the psamm—tutorial directory:

’$ virtualenv psamm-env

For Python 3, use the following command instead:

’$ python3 -m venv psamm-env

That will set up the virtual environment in a folder called psamm—env/. The next step is to activate the virtual
environment so that the Python that is being used will be the one that is in the virtualenv. To do this use the following
command:

’$ source psamm-env/bin/activate

This will change your command prompt to the following:

’(psamm—env) S

This indicates that the virtual environment is activated, and any installation of Python packages will now be installed
in the virtual environment. It is important to note that when you leave the environment and return at a later time, you
will have to reactivate the environment (use the source command above) to be able to use any packages installed in
it.

Note: For Windows users, the virtual environment is installed in a different file structure. The activate script on
these systems will reside in a Scripts folder. To activate the environment on these systems use the command:

> psamm-env\Scripts\activate
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Note: After activating the environment, the command pip list can be used to quickly get an overview of the
packages installed in the environment and the version of each package.

Setting up a Virtual Python Environment (Anaconda)

Anaconda is an open-source program that allows you to create virtual environments and download Python packages.
Unlike VirtualEnv, which is a environment manager for Python, Anaconda is both a package and an environment
manager for any programming language. Anaconda manages a list of environments for you, making it easy to work
with. Instructions on how to install Anaconda can be found here.

To create a conda environment, you do not have to be in the psamm-tutorial directory. You can create the
environment from anywhere in your system with a specific version of Python, even if it is not pre-installed:

’$ conda create ——name psamm-env python=<version>

Unlike VirtualEnv, there will be no psamm-env/ folder. A conda environment is not dependent on your current
working directory and can be activated from anywhere using the command:

’$ conda activate psamm-env

When you leave the environment and return at a later time, you will have to reactivate the environment (use the conda
activate command above) to be able to use any packages installed in it.

Note: After activating the environment, the command conda 1ist can be used to quickly get an overview of the
packages installed in the environment and the version of each package.

Installation of psamm-model and psamm-import

The next step will be to install psamm-model and psamm—-import as well as their requirements. To do this, you
can use the Python Package Installer, pip. To install both psamm-import and psamm-model you can use the
following command:

(psamm-env) $ pip install git+https://github.com/zhanglab/psamm-import.git

This will install psamm-import from its Git repository and also install its Python dependencies automatically.
One of these dependencies is psamm-model, so when psamm-import is installed you will also be installing
psamm-model.

If you only want to install psamm-model in the environment you can run the following command:

(psamm-env) $ pip install psamm

It is important to note that if only psamm-model is installed you will be able to apply PSAMM only on models that
are represented in the YAML format which will be described later on in the tutorial.

Installation of LP Solvers

The LP (linear programming) solvers are necessary for analysis of metabolic fluxes using the constraint-based model-
ing approaches.

2.1. Installation and Materials 7
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CPLEX is the recommended solver for PSAMM and is available with an academic license from IBM. Make sure that
you use at least CPLEX version 12.6. Instructions on how to install CPLEX can be found here.

Once CPLEX is installed, you need to install the Python bindings under the psamm-env virtual environment using the
following command:

(psamm-env) $ pip install <PATH>/IBM/ILOG/CPLEX_Studio<XXX>/cplex/python/<python_
—version>/<platform>

The directory path in the above command should be replaced with the path to the IBM CPLEX installation in your
computer. This will install the Python bindings for CPLEX into the virtual environment.

Note: While the CPLEX software will be installed globally, the Python bindings should be installed specifically
under the virtual environment with the PSAMM installation.

PSAMM also supports the use of three other linear programming solvers, Gurobi, QSopt_ex, and GLPK. To install
the Gurobi solver, Gurobi will first need to be installed on your computer. Gurobi can be obtained with an academic
license from here: Gurobi

Once Gurobi is installed the Python bindings will need to be installed in the virtual environment by running the
setup.py script in the package directory. An example of how this could be done on a macOS is (on other platforms the
path will be different):

(psamm-env) $ cd /Library/gurobi604/mac64/
(psamm-env) $ python setup.py install

The QSopt_ex solver can also be used with PSAMM. To install this solver, Python 3.4 or lower is required. You will
first need to install Qsopt_ex on your computer and afterwards the Python bindings (python-gsoptex) can be installed
in the virtual environment:

(psamm-env) $ pip install python-gsoptex

Please see the python-gsoptex documentation for more information on installing both the library and the Python
bindings.

Note: The QSopt_ex solver does not support Integer LP problems and as a result cannot be used to perform flux
analysis with thermodynamic constraints. If this solver is used thermodynamic constraints cannot be used during
simulation. By default psamm-model will not use these constraints.

The GLPK solver is also supported by PSAMM. The GLPK library can be installed in the virtual environment using
the following command:

’(psamm—env) $ pip install swiglpk

Once a solver is installed you should now be able to fully use all of the psamm-model flux analysis functions. To
see a list of the installed solvers the use the psamm-1ist-lpsolvers command:

’(psammfenv> $ psamm-list-lpsolvers

You will see the details on what solvers are installed currently and avaliable to PSAMM. For example if the Gurobi
and CPLEX solvers were both installed you would see the following output from psamm-1list-1lpsolvers:

Prioritized solvers:
Name: cplex

(continues on next page)
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(continued from previous page)

Priority: 10

MILP (integer) problem support: True

QP (quadratic) problem support: True
Rational solution: False

Class: <class 'psamm.lpsolver.cplex.Solver'>

Name: gurobi

Priority: 9

MILP (integer) problem support: True

QP (quadratic) problem support: False
Rational solution: False

Class: <class 'psamm.lpsolver.gurobi.Solver'>

Name: glpk

Priority: 8

MILP (integer) problem support: True

QP (quadratic) problem support: False
Rational solution: False

Class: <class 'psamm.lpsolver.glpk.Solver'>

Unavailable solvers:
gsoptex: Error loading solver: No module named 'gsoptex'

By default the solver with the highest priority (highest priority number) is used in constraint based simulations. If you
want to use a solver with a lower priority you will need to specify it by using the ——solver option. For example to
run FBA on a model while using the Gurobi solver the following command would be used:

(psamm-env) $ psamm-model fba --solver name=gurobi

2.1.3 PSAMM Model Collection

Converted versions of 57 published SBML metabolic models, 9 published Excel models and one MATLAB model
are available in the PSAMM Model Collection on GitHub. These models were converted to the YAML format and
then manually edited when needed to produce models that can generate non-zero biomass fluxes. The changes to the
models are tracked in the Git history of the repository so you can see exactly what changes needed to be made to
the models. To download and use these models with PSAMM you can clone the Git repository using the following
command:

$ git clone https://github.com/zhanglab/psamm-model-collection.git

This will create the directory psamm-model—-collection in your current folder that contains one directory named
excel with the converted Excel models, one directory named sbm1 with the converted SBML models and one named
mat lab with the converted MATLAB model. These models can then be used for simulations with PSAMM using the
commands detailed in this tutorial.

2.2 Importing, Exporting, and working with Models with PSAMM

This part of the tutorial will focus on how to use PSAMM to convert files between the YAML format and other popular
formats. An additional description of the YAML model format and its features is also provided here.

2.2. Importing, Exporting, and working with Models with PSAMM 9
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* Import Functions in PSAMM
» Importing Existing Models (psamm-import)
* YAML Format and Model Organization

e Version Control with the YAML Format

» Using PSAMM to export the model to other Software

2.2.1 Import Functions in PSAMM

For information on how to install PSAMM and the associated requirements, as well how to download the materials
required for this tutorial you can reference the Installation and Materials section of the tutorial.

2.2.2 Importing Existing Models (psamm-import)

In order to work with a metabolic model in PSAMM the model must be in the PSAMM-specific YAML format. This
format allows for a human readable representation of the model components and allows for enhanced customization
with respect to the organization of the metabolic model. This enhanced organization will allow for a more direct
interaction with the metabolic model and make the model more accessible to both the modeler and experimental
biologists.

Import Formats

The psamm-import program supports the import of models in various formats. For the SBML format, it supports
the COBRA-compliant SBML specifications, the FBC specifications, and the basic SBML specifications in levels 1,
2, and 3; for the JSON format, it supports the import of JSON files directly from the BiGG database or from locally
downloaded versions.

The support for importing from Excel file is model specific and are available for 17 published models. This import
requires the installation of the separate psamm-import repository. There is also a generic Excel import for models
produced that were produced by older versions of ModelSEED. Models from the current ModelSEED can be imported
in the SBML format.

To install the psamm-import package for Excel format models use the following command:

(psamm-env) $ pip install git+https://github.com/zhanglab/psamm-import.git

This install will make the Excel importers available from the command line when the psamm—-import program is
called.

To see a list of the models or model formats that are supported for import, use the command:

(psamm-env) $ psamm-import list

In the output, you will see a list of specific Excel models that are supported by psamm—-import as well as the
different SBML parsers that are available in PSAMM:

Generic importers:

json COBRApy JSON
modelseed ModelSEED model (Excel format)
sbml SBML model (non-strict)

sbml-strict SBML model (strict)

(continues on next page)
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(continued from previous page)

Model-specific importers:

icce806 Cyanothece sp. ATCC 51142 iCce806 (Excel format), Vu et al., 2012
ecoli_textbook Escerichia coli Textbook (core) model (Excel format), Orth et al.,
—2010

ijol366 Escerichia coli 1J01366 (Excel format), Orth et al., 2011

gsmn—-tb Mycobacterium tuberculosis GSMN-TB (Excel format), Beste et al., 2007
inje66l Mycobacterium tuberculosis iNJ661 (Excel format), Jamshidi et al., 2007
inj661m Mycobacterium tuberculosis iNJ66lm (Excel format), Fang et al., 2010
inj66lv Mycobacterium tuberculosis iNJ66lv (Excel format), Fang et al., 2010
ijn746 Pseudomonas putida 1iJN746 (Excel format), Nogales et al., 2011

ijp815 Pseudomonas putida iJP815 (Excel format), Puchalka et al., 2008
stm_v1.0 Salmonella enterica STM_v1.0 (Excel format), Thiele et al., 2011
ima945 Salmonella enterica iMA945 (Excel format), AbuOun et al., 2009

irr1083 Salmonella enterica i1iRR1083 (Excel format), Raghunathan et al., 2009
i0s217_672 Shewanella denitrificans 0S217 10S217_672 (Excel format), Ong et al.,
2014

imrl_799 Shewanella oneidensis MR-1 iMR1_799 (Excel format), Ong et al., 2014
imr4_812 Shewanella sp. MR-4 iMR4_812 (Excel format), Ong et al., 2014
iw3181_789 Shewanella sp. W3-18-1 iWw3181_789 (Excel format), Ong et al., 2014
isyn731 Synechocystis sp. PCC 6803 iSyn731 (Excel format), Saha et al., 2012

Now the model can be imported using the psamm—-import functions. Return to the psamm-tutorial folder if
you have left it using the following command:

(psamm-env) $ cd <PATH>/tutorial-part-1

Importing an SBML Model

In this tutorial, we will use the E. coli textbook core model [Orth13] as an example to demonstrate these functions
in PSAMM. First, we will convert the model from the SBML model. To import the E_coli_core.xml model to
YAML format run the following command:

(psamm-env) $ psamm-import sbml --source E_coli_sbml/ecoli_core_model.xml —--dest E_
—~coli_yaml

This will convert the SBML file in the E_coli_sbml directory into the YAML format that will be stored in the
E_coli_yaml/ directory. The output will give the basic statistics of the model and should look like this:

WARNING: Species M_pyr_b was converted to boundary condition because of "_b" suffix
WARNING: Species M_succ_b was converted to boundary condition because of " _Db" suffix
INFO: Detected biomass reaction: R_Biomass_Ecoli_core_w_GAM

INFO: Removing compound prefix 'M_ '

INFO: Removing reaction prefix 'R_'

INFO: Removing compartment prefix 'C_'

Model: Ecoli_core_model

— Biomass reaction: Biomass_Ecoli_core_w_GAM

- Compartments: 2

— Compounds: 72

- Reactions: 95

- Genes: 137

INFO: e 1is extracellular compartment

INFO: Using default flux limit of 1000.0

INFO: Converting exchange reactions to exchange file

2.2. Importing, Exporting, and working with Models with PSAMM 11
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psamm-import will produce some warnings if there are any aspects of the model that are going to be changed during
import. In this case the warnings are notifying you that the metabolites with a _b suffix have been converted to the
boundary conditions of the model. There will also be information on what prefixes were removed from the metabolite
IDs and if the importer was able to identify the Biomass Reaction in the model. This information is important to check
to make sure that the model was imported correctly. After the import the model will be available and ready to use for
any other PSAMM functions.

Importing an Excel Model

The process of importing an Excel model is the same as importing an SBML model except that you will need to specify
the specific model name in the command. The list of supported models can be seen using the list function above. An
example of an Excel model import is below:

(psamm-env) $ psamm-import ecoli_textbook —--source E_coli_excel/ecoli_core_model.xls -
——dest converted_excel_model

This will produce a YAML version of the Excel model in the converted_excel_model/ directory.

Since the Excel models are not in a standardized format these parsers need to be developed on a model-by-model basis
in order to parse all of the relevant information out of the model. This means that the parser can only be used for the
listed models and not for a general import.

Importing a JSON Model

psamm-import also supports the conversion of JSON format models that follows the conventions in COBRApy. If
the JSON model is stored locally, it can be converted with the following command:

(psamm-env) $ psamm—-import json —--source E_coli_json/e_coli_core.json —-dest,,
—converted_json_model/

Alternatively, an extension of the JSON importer has been provided, psamm-import—-bigg, which can be applied
to convert JSON models from BiGG database. To see the list of available models on the BiGG database the following
command can be used:

’(psamm—env) $ psamm-import-bigg list

This will show the available models as well as their names. You can then import any of these models to YAML format.
For example, using the following command to import the E. coli iJO1366 [Orth11] model from the BiGG database:

’(psamm—env) $ psamm-import-bigg 1J01366 —--dest converted_json_model_bigg/

Note: To use psamm-import-bigg you must have internet access to download the models remotely.

2.2.3 YAML Format and Model Organization

Now that we have imported the models into the YAML format we can take a look at what the different files are and
what information they contain. The PSAMM YAML format stores individual models under a designated directory, in
which there will be a number of files that stores the information of the model and specifies the simulation conditions.
The entry point of the YAML model is a file named model.yaml, which points to additional files that store the
information of the model components, including compounds, reactions, flux limits, exchange conditions, etc. While
we recommend that you use the name model . yaml for the central reference file, the file names for the included files
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are flexible and can be customized as you prefer. In this tutorial, we simply used the names: compounds.yaml,
reactions.yaml, limits.yaml, and exchange.yaml for the included files.

First change directory into E_coli_yaml:

(psamm-env) $ cd E_coli_yaml/

The directory contains the main model . yaml file as well as the other files that contain the model data:

(psamm-env) $ 1s
compounds .yaml
exchange.yaml
limits.yaml
model.yaml
reactions.yaml

These files can be opened using any standard text editor. We highly recommend using an editor that includes syntax
highlighting for the YAML language (one such editor is the Atom editor which includes built-in support for YAML
and is available for macOS, Linux and Windows). You can also use commands like 1ess and editors like vi or nano
to quickly inspect and edit the files from the command line:

(psamm-env) $ less <file_name>.yaml

The central file in this organization is the model . yaml file. The following is an example of the model . yaml file
that is obtained from the import of the E. coli textbook model. The model . yaml file for this imported SBML model
should look like the following:

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000.0
compartments:
- id: c¢

adjacent_to: e

name: Cytoplasm
- id: e

adjacent_to: c

name: Extracellular
compounds :
— include: compounds.yaml
reactions:
— include: reactions.yaml
exchange:
— include: exchange.yaml
limits:
— include: limits.yaml

The model.yaml file defines the basic components of a metabolic model, including the model name
(Ecoli_core_model), the biomass function (Biomass_Ecoli_core_w_GAM), the compound files (compounds.
yaml), the reaction files (reactions.yaml), the flux boundaries (1imits.yaml), and the exchange conditions
(exchange.yaml). The additional files are defined using include functions. This organization allows you to easily
change aspects of the model like the exchange reactions by simply referencing a different exchange file in the central
model .yaml definition. In addition to the information on the other components of the model there will also be
details on the compartment information for the model. This will provide an overview of how compartments are related
to each other and what their abbreviations and names are. For this small model there is only an e and a ¢ compartment
representing the cytoplasm and extracellular space but more complex cells with multiple compartments can also be
represented.

This format can also be used to include multiple files in the list of reactions and compounds. This feature can be useful,
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for example, if you want to name different reaction files based on the subsystem designations or cellular compartments,
or if you want to separate the temporary reactions that are used to fill reaction gaps from the main model. An example
of how you could designate multiple reaction files is found below. This file can be found in the additional files folder
in the file complex_model.yaml.

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default flux limit: 1000.0
compartments:
- id: c¢

adjacent_to: e

name: Cytoplasm
- id: e

adjacent_to: c

name: Extracellular

model:

— include: core_model_definition.tsv
compounds :

— include: compounds.yaml

reactions:

— include: reactions/cytoplasm.yaml

- include: reactions/periplasm.yaml

— include: reactions/transporters.yaml
— include: reactions/extracellular.yaml
exchange:

— include: exchange.yaml

limits:

— include: limits.yaml

As can be seen here the modeler chose to distribute their reaction database files into different files representing various
cellular compartments and roles. This organization can be customized to suit your preferred workflow.

There are also situations where you may wish to designate only a subset of the reaction database in a metabolic
simulation. In these situations it is possible to use a model definition file to identify which subset of reactions will be
used from the larger database. The model definition file is simply a list of reaction IDs that will be included in the
simulation.

An example of how to include a model definition file can be found below.

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000.0
compartments:
- id: c¢

adjacent_to: e

name: Cytoplasm
- id: e

adjacent_to: c

name: Extracellular
model:
— include: subset.tsv
compounds :
— include: compounds.yaml
reactions:
— include: reactions.yaml
exchange:
— include: exchange.yaml
limits:

(continues on next page)
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(continued from previous page)

- include: limits.yaml

Note: When the model definition file is not identified, PSAMM will include the entire reaction database in the model.
However, when it is identified, PSAMM will only include the reactions that are listed in the model definition file in the
model. This design can be useful when you want to make targeted tests on a subset of the model or when you want to
include a larger database for use with the gap filling functions.

Reactions

The reactions.yaml file is where the reaction information is stored in the model. A sample from this file can be
seen below:

- id: ACALD
name: acetaldehyde dehydrogenase (acetylating)
genes: b0351 or bl241

equation: '|acald[c]| + |coalc]| + |nad[c]| <=> Jaccoalc]| + |h[c]| +
|nadh[c]|"
subsystem: Pyruvate Metabolism
- id: ACALDt

name: acetaldehyde reversible transport
genes: s0001

equation: '|acald[e]| <=> Jacald[c] |’
subsystem: Transport, Extracellular

Each reaction entry is designated with the reaction ID first. Then the various properties of the reaction can be listed
below it. The required properties for a reaction are ID and equation. Along with these required attributes others can
be included as needed in a specific project. These can include but are not limited to EC numbers, subsystems, names,
and genes associated with the reaction. For example, in a collaborative reconstruction you may want to include a field
named authors to identify which authors have contributed to the curation of a particular reaction.

Reaction equations can be formatted in multiple ways to allow for more flexibility during the modeling process.
The reactions can be formatted in a string format based on the ModelSEED reaction format. In this representation
individual compounds in the reaction are represented as compound IDs followed by the cellular compartment in
brackets, bordered on both sides by single pipes. For example if a hydrogen compound, Hydr, in a cytosol
compartment was going to be in an equation it would be represented as follows:

’IHydr[cytosol]l

These individual compounds can be assigned stoichiometric coefficients by adding a number in parentheses before the
compound. For example if a reaction contained two hydrogens it could appear as follows:

’(2) |Hydr [cytosol] |

These individual components are separated by + signs in the reaction string. The separation of the reactants and
products is through the use of an equal sign with greater than or less than signs designating directionality. These could
include => or <= for reactions that can only progress in one direction or <=> for reactions that can progress in both
directions. An example of a correctly formatted reaction could be as follows:

'"lac[cl| + latplc]l| <=> Jactplc]l| + ladplc]|’

For longer reactions the YAML format provides a way to list each reaction component on a single line. For example a
reaction could be represented as follows:
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- id: ACKr
name: acetate kinase
equation:
compartment: c
reversible: yes

left:
- id: ac_c
value: 1
- id: atp_c
value: 1
right:
- id: actp_c
value: 1
- id: adp_c

value: 1
subsystem: Pyruvate Metabolism

This line based format can be especially helpful when dealing with larger equations like biomass reactions where there
can be dozens of components in a single reaction.

Gene associations for the reactions in a model can also be included in the reaction definitions so that gene essentiality
experiments can be performed with the model. These genes associations are included by adding the genes property
to the reaction like follows:

- id: ACALDt
name: acetaldehyde reversible transport
equation: '|acaldle]| <=> |acald[c]|'

subsystem: Transport, Extracellular
genes: gene_0001

More complex gene associations can also be included by using logical and/or statements in the genes property. When
performing gene essentiality simulations this logic will be taken into account. Some examples of using this logic with
the genes property can be seen below:

genes: gene_0001 or gene_0002
genes: gene_0003 and gene_0004
genes: gene_0003 and gene_0004 or gene_0005 and gene_0006

genes: gene_0001 and (gene_0002 or gene_0003)

Compounds

The compounds.yaml file is organized in a similar way as the reactions.yaml. An example can be seen
below.

- id: 13dpg_c
name: 3-Phospho-D-glyceroyl-phosphate
formula: C3H4010P2

- id: 2pg_c
name: D-Glycerate-2-phosphate
formula: C3H407P

- id: 3pg_c
name: 3-Phospho-D-glycerate
formula: C3H407P
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The compound entries begin with a compound ID which is then followed by the compound properties. These properties
can include a name, chemical formula, and charge of the compound.

Limits

The limits file is used to designate reaction flux limits when it is different from the defaults in PSAMM. By default,
PSAMM would assign the lower and upper bounds to reactions based on their reversibility, i.e. the boundary of
reversible reactions are —1000 < v; < 1000, and the boundary for irreversible reactions are 0 < v; < 1000.
Therefore, the 1imits.yaml file will consist of only the reaction boundaries that are different from these default
values. For example, if you want to force flux through an artificial reaction like the ATP maintenance reaction ATPM
you can add in a lower limit for the reaction in the limits file like this:

- reaction: ATPM
lower: 8.39

Each entry in the limits file includes a reaction ID followed by upper and lower limits. Note that when a model is
imported only the non-default flux limits are explicitly stated, so some of the imported models will not contain a
predefined limits file. In the E. coli core model, only one reaction has a non-default limit. This reaction is an ATP
maintenance reaction and the modelers chose to force a certain level of flux through it to simulate the general energy
cost of cellular maintenance processes.

Exchange

The exchange file is where you can designate the boundary conditions for the model. The compartment of the exchange
compounds can be designated using the compartment tag, and if omitted, the extracellular compartment (e) will be
assumed. An example of the exchange file can be seen below.

compounds:

- id: ac_e
reaction: EX_ac_e
lower: 0.0

- id: acald_e
reaction: EX_acald_e
lower: 0.0

- id: akg_e
reaction: EX_akg_e
lower: 0.0

- id: co2_e
reaction: EX_co2_e

Each entry starts with the ID of the boundary compound and followed by lines that defines the lower and upper
limits of the compound flux. Internally, PSAMM will translate these boundary compounds into exchange reactions in
metabolic models. Additional properties can be designated for the exchange reactions including an ID for the reaction,
the compartment for the reaction, and lower and upper flux bounds for the reaction. In the same way that only non-
standard limits need to be specified in the limits file, only non-standard exchange limits need to be specified in the
exchange file. This can be seen with the example above where the upper limits are not set since they should just be the
default limit of 1000.

Model Format Customization

The YAML model format is highly customizable to suit your preferences. File names can be changed according to
your own design. These customizations are all allowed by PSAMM as long as the central model . yaml file is also
updated to reflect the different file names referred. While all the file names can be changed it is recommended that the
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central model . yaml file name does not change. PSAMM will automatically detect and read the information from
the file if it is named model . yaml. If you do wish to also alter the name of this file you will need to specify the path
of your model file using the ——model option whenever any PSAMM commands are run. For example, to run FBA
with a different central model file named ecoli_model.yaml, you could run the command like this:

(psamm-env) $ psamm-model —--model ecoli_model.yaml fba

2.2.4 Version Control with the YAML Format

The YAML format contains a logical division of the model information and allows for easier modification and in-
teraction with the model. Moreover, the text-based representation of YAML files can enable the tracking of model
modifications using version control systems. In this tutorial we will demonstrate the use of the Git version control
system during model development to track the changes that have been added to an existing model. This feature will
improve the documentation of the model development process and improve collaborative annotations during model
curation.

A broad overview of how to use various Git features can be found here: Git

Initiate a Git Repository for the YAML Model

Throughout this tutorial version tracking using Git will be highlighted in various sections. As you follow along with
the tutorial you can try to run the Git commands to get a sense of how Git and PSAMM work together. We will also
highlight how the features of Git help with model curation and development when using the YAML format.

To start using Git to track the changes in this git model the folder must first be initialized as a Git repository. To do
this first enter the YAML model directory and use the following command:

(psamm-env) $ git init
Initialized empty Git repository in <...>/psamm-tutorial/E_coli_yaml/.git/

After the folder is initialized as a Git repository the files that were initially imported from the SBML version can be
added to the repository using the following command:

’(psammfenv> $ git add *.yaml

this will stage all of the files with the yaml extension to be committed. Then the addition of these files can be added
to the repository to be tracked by using the following command:

’(psammfenv> $ git commit -m 'Initial import of E. coli Core Model'

Now these files will be tracked by Git and any changes that are made will be easily viewable using various Git
commands. PSAMM will also print out the Git commit ID when any commands are run. This makes it easier for you
to track exactly what version of the model a past simulation was done on.

The next step in the tutorial will be to add in a new carbon utilization pathway to the E. coli core model and Git will
be used to track these new additions and manage the curation in an easy to track manner. The tutorial will return to the
version tracking at various points in order to show how this can be used during model development.

FBA on Model Before Expansion

Now that the model is imported and being tracked by Git it will be helpful to do a quick simulation to confirm that the
model is complete and able to generate flux. To do this you can run the FBA command in the model directory:
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(psamm-env) $ psamm-model fba

The following is a sample of the output from this initial flux balance analysis. It can be seen that the model is generating
flux through the objective function and seems to be a complete working model. Now that this is known any future
changes that are made to the model can be made with the knowledge that the unchanged model was able to generate
biomass flux.

ACONTa 6.00724957535 |[Citrate[c] | <=> |cis—-Aconitate[c]| + |H20[c]| b0118 or_
—bl1276
ACONTDb 6.00724957535 |cis—Aconitate[c] | + |H20[c]| <=> |Isocitratelc]|

—b0118 or bl276

INFO: Objective flux: 0.873921506968

Adding a new Pathway to the Model

The E. coli textbook model that was imported above is a small model representing the core metabolism of E. coli.
This model is great for small tests and demonstrations due to its size and excellent curation. For the purposes of this
tutorial this textbook model will be modified to include a new metabolic pathway for the utilization of D-Mannitol
by E. coli. This is a simple pathway which involves the transport of D-Mannitol via the PTS system and then the
conversion of D-Mannitol 1-Phosphate to D-Fructose 6-Phosphate. Theoretically the inclusion of this pathway should
allow the model to utilize D-Mannitol as a sole carbon source. Along with this direct pathway another set of reactions
will be added that remove the phosphate from the mannitol 1-phosphate to create cytoplasmic mannitol which can
then be converted to fructose and then to fructose 6-phosphate.
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To add these reactions, there will need to be three components added to the model. First the new reactions will be
added to the model, then the relevant exchange reactions, and finally the compound information.

The new reactions in the database can be added directly to the already generated reactions file but for this case they
will be added to a separate database file that can then be added to the model through the include function in the
model .yaml file.

A reaction database file named mannitol_path.yaml is supplied in additional_files folder. This file can
be added into the model . yaml file by copying it to your working folder using the following command:

(psamm-env) $ cp ../additional_files/mannitol_pathway.yaml

And then specifying it in the model . yaml file by adding the following line in the reactions section:

reactions:
- include: reactions.yaml
- include: mannitol_pathway.yaml

Alternatively you can copy an already changed model . yaml file from the additional files folder using the following
command:

(psamm-env) $ cp ../additional_files/model.yaml

This line tells PSAMM that these reactions are also going to be included in the model simulations.

Now you can test the model again to see if there were any effects from these new reactions added in. To run an FBA
simulation you can use the following command:
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(psamm-env) $ psamm-model fba —--all-reactions

The -—all-reactions option makes the command write out all reactions in the model even if they have a flux of
zero in the simulation result. It can be seen that the newly added reactions are being read into the model since they do
appear in the output. For example the MANNIIDEH reaction can be seen in the FBA output and it can be seen that
this reaction is not carrying any flux. This is because there is no exchange reaction added into the model that would
provide mannitol.

FRUKIN 0.0 |frulc]| + |ATP[c]| => |D-Fructose-6-phosphate[c]| + |ADP[c]| +_
—|H[c]|

MANNI1PDEH 0.0 |[INicotinamide—-adenine-dinucleotide[c] | + |mannilp[c]| => |D-
—Fructose-6-phosphate[c] | + |[H[c]| + |Nicotinamide-adenine-dinucleotide-reduced|[c] |
MANNI1PPHOS 0.0 I[mannilp[c]| + |H20[c]| => |manni[c]| + |Phosphate(c] |

MANNIDEH 0.0 [INicotinamide—-adenine-dinucleotide[c] | + |manni[c]| =>_

< |Nicotinamide—-adenine—-dinucleotide—-reduced[c] | + |frulc]|

MANNIPTS 0.0 Imanni[e] | + |Phosphoenolpyruvate([c]| => |mannilp[c]| +_

— |Pyruvate[c] |

Changing the Boundary Definitions Through the Exchange File

To add new exchange reactions to the model a modified exchange.yaml file has been included in the additional
files. This new boundary condition could be added by creating a new entry in the existing exchange . yaml file but
for this tutorial the exchange file can be changed by running the following command:

(psamm-env) $ cp ../additional_files/exchange.yaml

This will simulate adding in the new mannitol compound into the exchange file as well as setting the uptake of glucose
to be zero.

Now you can track changes to the exchange file using the Git command:

(psamm-env) $ git diff exchange.yaml

From the output, it can be seen that a new entry was added in the exchange file to add the mannitol exchange reaction
and that the lower flux limit for glucose uptake was changed to zero. This will ensure that any future simulations done
with the model in these conditions will only have mannitol available as a carbon source.

@@ _115 +1r7 @@
name: Default medium

compounds :
+- 1id: manni
+ lower: -10
- id: ac_e

reaction: EX_ac
lower: 0.0

@@ -25,7 +27,7 Q@
lower: 0.0

- id: glc_D_e
reaction: EX_glc

- lower: -10.0

+ lower: 0.0

- id: gln_L_e
reaction: EX_gln_L
lower: 0.0
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In this case the Git output indicates what lines were added or removed from the previous version. Added lines are
indicated with a plus sign next to them. These are the new lines in the new version of the file. The lines with a minus
sign next to them are the line versions from the old format of the file. This makes it easy to figure out exactly what
changed between the new and old version of the file.

Now you can test out if the new reactions are functioning in the model. Since there is no other carbon source, if the
model sustains flux through the biomass reaction it must be from the supplied mannitol. The following command can
be used to run FBA on the model:

(psamm-env) $ psamm-model fba —--all-reactions

From the output it can be seen that there is flux through the biomass reaction and that the mannitol utilization reactions
are being used. In this situation it can also be seen that the pathway that converts mannitol to fructose first is not being
used.

FRUKIN 0.0 |frulc]| + |ATP[c]| => |D-Fructose-6-phosphate([c]| + |ADP[c]| +_
— |[H[c]|

MANNI1IPDEH 10.0 |[INicotinamide-adenine—-dinucleotide([c] | + |mannilp[c]| => |D-
—Fructose-6-phosphate[c]| + |H[c]| + |Nicotinamide—-adenine-dinucleotide-reducedlc] |
MANNI1PPHOS 0.0 |lmannilp[c]| + |H20[c]| => |manni[c]| + |Phosphatelc] |

MANNIDEH 0.0 |[INicotinamide-adenine-dinucleotide[c] | + |manni[c]| =>_

— |Nicotinamide—adenine-dinucleotide-reduced(c] | + |[frulc]|

MANNIPTS 10.0 Imannife] | + |Phosphoenolpyruvate([c]| => |mannilplc]| +_

— |Pyruvate[c] |

You can also choose to maximize other reactions in the network. For example this could be used to analyze the network
when production of a certain metabolite is maximized or to quickly change between different objective functions that
are in the model. To do this you will just need to specify a reaction ID in the command and that will be used as the
objective function for that simulation. For example if you wanted to analyze the network when the FRUKIN reaction
is maximized the following command can be used:

(psamm-env) $ psamm-model fba —--objective=FRUKIN --all-reactions

It can be seen from this simulation that the FRUKIN reaction is now being used and that the fluxes through the network
have changed from when the biomass function was used as the objective function.

EX_lac_D_e 20.0 |[D-Lactate[e] | <=>

EX_manni_e -10.0 Imannife] | <=>

EX_02_e -5.0 |02 [e] | <=>

EX_pi_e 0.0 |Phosphate[e] | <=>

EX_pyr_e 0.0 |[Pyruvatele] | <=>

EX_succ_e 0.0 |Succinate[e] | <=>

FBA 10.0 |[D-Fructose-1-6-bisphosphate[c] | <=> |Dihydroxyacetone-phosphatelc]| +_
—|Glyceraldehyde-3-phosphate[c]| b2097 or bl773 or b2925

FBP 0.0 |[D-Fructose-1-6-bisphosphate[c]| + |H20[c]| => |D-Fructose-6-—
—phosphate[c] | + |Phosphate(c]| b3925 or b4232

FORt2 0.0 |[Formate[e] | + |H[e]]| => |Formatelc]| + |H[c]| b0904 or b2492
FORt1 0.0 |[Formate[c]| => |Formatele] | 0904 or b2492

FRD7 0.0 |Fumarate([c] | + |Ubigquinol-8[c]| => |Ubiquinone-8[c]| +_

< |Succinate[c]| bd41l51 and b4152 and b4153 and b4154

FRUKIN 10.0 |frulc]| + |ATP[c]| => |D-Fructose-6-phosphate([c]| + |ADP[c]| +_
%|H[C}|
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Adding new Compounds to the Model

In the previous two steps the reactions and boundary conditions were added into the model. There was no information
added in about what the compounds in these reactions actually are but PSAMM is still able to treat them as metabolites
in the network and utilize them accordingly. It will be helpful if there is information on these compounds in the model.
This will allow you to use the various curation tools and will allow PSAMM to use the new compound names in the
output of these various simulations. To add the new compounds to the model a modified compounds . yaml file has
been provided in the additional_files folder. These compounds can be entered into the existing compounds .
yaml file but for this tutorial the new version can be copied over by running the following command.

’(psamm—env) $ cp ../additional_files/compounds.yaml

Using the diff command in Git, you will be able to identify changes in the new compounds . yaml file:

’(psamm—env) $ git diff compounds.yaml

It can be seen that the new compound entries added to the model were the various new compounds involved in this
new pathway.

@@ -1,3 +1,12 Q@

+- id: fru_c

+ name: Fructose

+ formula: C6H1206

+— 1id: manni

+ name: Mannitol

+ formula: C6H1406

+- id: mannilp

+ name: Mannitol l-phosphate

+ formula: C6H1309P

- id: 13dpg_c
name: 3-Phospho-D-glyceroyl-phosphate
formula: C3H4010P2

This will simulate adding in the new compounds to the existing database. Now you can run another FBA simulation to
check if these new compound properties are being incorporated into the model. To do this run the following command:

(psamm-env) $ psamm-model fba --all-reactions

It can be seen that the reactions are no longer represented with compound IDs but are now represented with the
compound names. This is because the new compound features are now being added to the model.

EX_manni_e -10.0 |[Mannitol[e] | <=>

FRUKIN 0.0 |Fructose[c]| + |ATP[c]| => |D-Fructose-6-phosphate(c]| +
— |ADP[c] | + |H[c]|

[

MANNI1PDEH 10.0 [Nicotinamide—-adenine-dinucleotide[c] | + |Mannitol 1-

—phosphate[c] | => |D-Fructose-6-phosphate[c]| + |H[c]| + |[Nicotinamide-adenine-
—dinucleotide-reduced|c] |

MANNI1PPHOS 0.0 [Mannitol l-phosphate[c]| + |H20[c]| => |Mannitol[c]| +_

— |Phosphate[c] |

MANNIDEH 0.0 |[INicotinamide-adenine-dinucleotide([c] | + |Mannitol[c]| =>_
— |Nicotinamide—adenine-dinucleotide-reduced[c] | + |Fructoselc]|

MANNIPTS 10.0 [Mannitol[e] | + |Phosphoenolpyruvate[c]| => |Mannitol 1-

—phosphate([c]| + |Pyruvatelc] |
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Checking File Changes with Git

Now that the model has been updated it will be useful to track the changes that have been made.

First it will be helpful to get a summary of all the files have been modified in the model. Since the changes have been
tracked with Git the files that have changed can be viewed by using the following Git command:

(psamm-env) $ git status

The output of this command should show that the exchange, compound, and model . yaml files have changed and
that there is a new file that is not being tracked named mannitol_pathway.yaml. First the new mannitol pathway
file can be added to the Git repository so that future changes can be tracked using the following commands:

’(psmam—env) $ git add mannitol_pathway.yaml

Then specific changes in individual files can be viewed by using the git diff command followed by the file name.
For example to view the changes in the compounds . yaml file the following command can be run.

’(psamm—env) $ git diff model.yaml

The output should look like the following:

Q@ -5,6 +5,7 @@ compounds:
- include: compounds.yaml
reactions:
- include: reactions.yaml

+ - include: mannitol_pathway.yaml
exchange:
- include: exchange.yaml
limits:

This can be done with any file that had changes to make sure that no accidental changes are added in along with
whatever the desired changes are. In this example there should be one line added in the model.yaml file, three
compounds added into the compounds . yaml file, and one exchange reaction added into the exchange . yaml file
along with one change that removed glucose from the list of carbon sources in the exchange settings (by changing the
lower bound of its exchange reaction to zero).

Once the changes are confirmed these files can be added with the Git add command.

(psamm-env) $ git add compounds.yaml
(psamm-env) $ git add exchange.yaml
(psamm-env) $ git add model.yaml

These changes can then be committed to the repository using the following command:

(psamm-env) $ git commit -m 'Addition of mannitol utilization pathway and associated,,
—compounds'

Now the model has been updated and the changes have been committed. The Git log command can be used to view
what commits have been made in the repository. This allows you to track the overall progress as well as examine
what specific changes have been made. More detailed information between the commits can be viewed using the
git diff command along with the commit ID that you want to compare the current version to. This will tell you
specifically what changes occurred between that commit and the current version.

You can also view a log of the commits in the model by using the following command:

(psamm-env) $ git log
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This can be helpful for getting an overall view of what changes have been made to a repository.

The Git version tracking can also be used with GitHub, BitBucket, GitLab or any other Git hosting provider to share
repositories with other people. This can enable you to collaborate on different aspects of the modeling process while
still tracking the changes made by different groups and maintaining a functional model.

2.2.5 Using PSAMM to export the model to other Software

If you want to export the model in a format to use with other software, that is also possible using PSAMM. The YAML
formatted model can be easily exported as an SBML file using the following command:

(psamm-env) $ psamm-model sbmlexport Modified_core_ecoli.xml

This will export the model in SBML level 3 version 1 format which can then be used in other software that support
this format.

2.3 Model Curation

This tutorial will go over how to utilize the curation functions in PSAMM to correct common errors and ensure that
metabolic reconstructions are accurate representations of the metabolism of an organism.

e Materials

e Common Errors in Metabolic Reconstructions

PSAMM Warnings

* Reaction Consistency in PSAMM
* Gap Identification in PSAMM

» Search Functions in PSAMM

* Duplicate Reaction Checks

2.3.1 Materials

For information on how to install PSAMM and the associated requirements, as well how to download the materials
required for this tutorial you can reference the Installation and Materials section of the tutorial.

For this part of the tutorial we will be using a modified version of the E. coli core metabolic models that has been
used in the other sections of the tutorial. This model has been modified to add in a new pathways for the utilization of
mannitol as a carbon source. To access this model and the other files needed you will need to go into the tutorial-part-2
folder located in the psamm-tutorial folder.

(psamm-env) $ cd <PATH>/tutorial-part-2/

Once in this folder you should see two directories. One is the E_coli_yaml folder which contains the version of the
model we will use. The other is called additional_files, which contains some files we will use during the tutorial.

2.3. Model Curation 25


https://github.com/
https://bitbucket.org/
https://gitlab.com/

PSAMM Documentation, Release 1.1

2.3.2 Common Errors in Metabolic Reconstructions

Many types of errors can be introduced into metabolic models. Some errors can be introduced during manual editing
of model files while others can result from inconsistent representations of the biology of the system. Various features
in PSAMM are designed ot help identify and fix these problems to ensure that the reconstruction does not contain
these kinds of errors.

Some errors cannot be easily identified without extensive manual inspection of the model data files. These PSAMM
functions are designed to help identify these errors and make the correction process easier.

2.3.3 PSAMM Warnings

The most basic way to identify possible errors in a model will be through reading the warning messages printed out by
PSAMM when any functions are run on a model. These warning messages can be an easy way to identify if something
in the reconstruction is not set up the way that was intended. The following are examples of the types of warnings that
PSAMM will provide and what kinds of errors they might indicate.

The first type of warning that PSAMM can provide is a waning that there is a compound that is in a reaction but is not
defined in the compound information of the model. While PSAMM doesn’t necessarily know if this is an error, these
warning can help identify compound ids in the reconstruction that may have typos in them or that need to be defined
in the compounds data for the reconstruction. For example in the warning below it would appear that the compound
id for ATP had been mistyped and included two extra t’s in it. These types of errors can make reactions in a model
inconsistent and may lead to incorrect conclusions from the model if they are not corrected.

WARNING: The compound cpd_atttp was not defined in the list of compounds

The second type of warning will similarly help identify if there was an error introduced in one of the reconstruction’s
reactions. This warning will indicate that there is a compound present in the reconstruction that has a compartment
that is not defined elsewhere in the model. In the example below a compound was added in a reaction as being in
the compartment ‘X’. Since this compartment was not used in the model the reaction involving this instance of the
compound would become flux inconsistent.

WARNING: The compartment X was not defined in the list of compartments.

The third and fourth types of warnings can be useful in identify that the exchange file is set up correctly for the
reconstruction. These two kinds of errors will help identify if there are compounds that are present in the extracellular
compartment but do not have a corresponding exchange reaction in the boundary conditions. This can be problematic
for some models that require certain sinks for overproduced compounds in the boundary. The other kind of warning
will indicate if there are compounds in the exchange reactions that cannot be utilized by any reactions in the model.
This could indicate that a transport reaction is missing from the model or that the compound could be removed from
the exchange file.

WARNING: The compound cpd_chitob was in the extracellular compartment but not defined
—~1in the medium

WARNING: The compound cpd_etoh was defined in the medium but is not in the,
—extracellular compartment

2.3.4 Reaction Consistency in PSAMM

The previous examples of warning messages produced by PSAMM can be helpful as a first step in identifying possible
errors in a model but there are various other types of errors that may be present in models that specific PSAMM
functions can help identify. The first kind of errors are ones related to the balancing of reactions in model. It is
important that metabolic models be balanced in terms of elements, charge, and stoichiometry. PSAMM has three
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functions available to identify reactions that are not balanced in these properties which can help correct them and lead
to more accurate and true representations of metabolism.

Stoichiometric Checking

PSAMM’s masscheck tool can be used to check if the reactions in the model are stoichiometrically consistent and
the compounds that are causing the imbalance. This can be useful when curating the model because it can assist in
easily identify missing compounds in reactions. A common problem that can be identified using this tool is a loss of
hydrogen atoms during a metabolic reaction. This can occur due to modeling choices or incomplete reaction equations
but is generally easy to identify using masscheck.

To report on the compounds that are not balanced use the following masscheck command:

(psamm-env) $ psamm-model masscheck

This command will produce an output like the following:

accoa_c 1.0 Acetyl-CoA
acald_e 1.0 Acetaldehyde
acald_c 1.0 Acetaldehyde
h_e 0.0 H

h_c 0.0 H

INFO: Consistent compounds: 73/75

The masscheck command will first try to assign a positive mass to all of the compounds in the model while balancing
the masses such that the left-hand side and right-hand side add up in every model reaction. All the compound masses
are reported, and the compounds that have been assigned a zero value for the mass are the ones causing imbalances.

In certain cases a metabolic model can contain compounds that represent electrons, photons, or some other artificial
compound. These compounds can cause problems with the stoichiometric balance of a reaction because of their unique
functions. In order to deal with this an additional property can be added to the compound entry that will designate it as
a compound with zero mass. This designation will tell PSAMM to consider these compounds to have no mass during
the stoichiometric checking which will prevent them from causing imbalances in the reactions. An example of how to
add that property to a compound entry can be seen below:

- id: phot
name: Photon
zeromass: yes

To report on the specific reactions that may be causing the imbalance, the following command can be used:

(psamm-env) $ psamm-model masscheck —-—-type=reaction

FRUKIN 1.0 |Fructose[c]| + |ATP[c]| => |D-Fructose-6-phosphate(c]| +
< |ADP[c]| + |H[c]|
INFO: Consistent reactions: 100/101

[

This check is performed similarly to the compound check. In addition, mass residual values are introduced for each
metabolic reaction in the network. These mass residuals are then minimized and any reactions that result in a non-zero
mass residual value after minimization are reported as being stoichiometrically inconsistent. A non-zero residual value
after minimization tells you that the reaction in question may be unbalanced and missing some mass from it.

Sometimes the residue minimization problem may have multiple solutions. In these cases the residue value may be
reallocated among a few connected reactions. In this example the unbalanced reaction is the MANNIDEH reaction:
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MANNIDEH |mannif[c]| + |nad[c]| => |frulc]| + |nadhlc]]|

In this reaction equation the right hand side is missing a proton. However minimization problem can result in the
residue being placed on either the fru_c or the nadh_c compounds in an attempt to balance the reaction. Because
nadh_c occurs in thirteen other reactions in the network, the program has already determined that that compound
is stoichiometrically consistent. On the other hand fru_c only occurs one other time. Since this compound is less
connected the minimization problem will assign the non-zero residual to this compound. This process results in the
FRUKIN reaction which contains this compound as being identified as being stoichiometrically inconsistent.

In these cases you will need to manually check the reaction and then use the ——checked option for the masscheck
command to force the non-zero residual to be placed on a different reaction. This will rerun the consistency check and
force the residual to be placed on a different reaction. To do this we would run the following command.

(psamm-env) $ psamm-model masscheck --type=reaction —--checked FRUKIN

Now, the output should report the MANNIDEH reaction and it can be seen that the reaction equation of MANNIDEH
is specified incorrectly. It appears that a hydrogen compound was left out of the reaction for MANNIDEH. This would
be an easy problem to correct by simply adding in a hydrogen compound to correct the lost atom in the equation.

The stoichiometric consistency checking allows for the easy identification of stoichiometrically inconsistent com-
pounds while providing a more targeted subset of reactions to check to fix the problem. This allows you to quickly
identify problematic reactions rather than having to manually go through the whole reaction database in an attempt to
find the problem.

In some cases there are reactions that are going to be inherently unbalanced and might cause problems with using these
methods. If you know that this is the case for a specific reaction they can specify that the reaction be excluded from
the mass check so that the rest of the network can be analyzed. To do this the ——exclude option can be used. For
example if you wanted to exclude the reaction FRUKIN from the mass check they could use the following command:

(psamm-env) $ psamm-model masscheck —--exclude FRUKIN

This exclude option can be helpful in removing inherently unbalanced reactions like macromolecule synthesis reations
or incomplete reactions that would be identified as being stoichiometrically inconsistent. It is also possible to create a
file that lists multiple reactions to exclude. Put each reaction identifier on a separate line in the file and refer to the file
be prefixing the file name with a @:

(psamm-env) $ psamm-model masscheck —--exclude @excluded_reactions.txt

Before we fix the model with the correction to the MANNIDEH reaction, let us first check the model for formula
inconsistencies to show how this can also be used in conjunction with mass checking and other methods to correct
model inconsistencies.

Formula Consistency Checking

Formula checking will check that each reaction in the model is balanced with respect to the chemical formulas of each
compound. To check the model for formula consistencies run the formula check command:

(psamm-env) $ psamm-model formulacheck

The output should appear as follows:

INFO: Model: Ecoli_core_model
INFO: Model Git version: 9812080

MANNIDEH  C27H40N7020P2  C27H39N7020P2 H

Biomass_FEcoli_core_w_GAM C1088.0232H1471.1810N446.761701236.7018P240.5298S53.7478_,
~,C1045.4677H1395.2089N441.308901189.0281P236.851153.7478 C42.5555H75.9721N5.
—4528047.6737P3.6787 (continues on next page)
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(continued from previous page)

INFO: Unbalanced reactions: 2/80
INFO: Unchecked reactions due to missing formula: 0/80

In this case two reactions are identified in the model as being unbalanced. The biomass objective function,
Biomass_Ecoli_core_w_GAM, and the reaction that was previously identified through masscheck as being unbal-
anced, MANNIDEH. In the case of the objective function this is imbalanced due to the formulation of the objective
function. The reaction functions as a sink for the compounds required for growth and only outputs depleted energy
compounds. This leads to it being inherently formula imbalanced but it is a necessary feature of the model. The other
reaction is MANNIDEH. It can be seen that the total number of atoms on each side does not match up. PSAMM also
outputs what atoms would be needed to balance the reaction on both sides. In this case there is a missing hydrogen
atom on the right side of the equation. This can be easily rectified by adding in the missing hydrogen. To do this
correction in this tutorial, you can copy a fixed version of the mannitol pathway from the additional files folder using
the following command:

(psamm-env) $ cp ../additional_files/mannitol_pathway_v2.yaml mannitol_pathway.yaml

Once that problem with the new reaction is fixed the model will pass both the formula check and mass check.

Charge Consistency Checking

The charge consistency function is similar to the formula consistency function but instead of using the chemical
formulas for the compounds, PSAMM will use the assigned charges that are designated in the compounds file and
check that these charges are balanced on both sides of the reaction.

To run a charge consistency check on the model use the chargecheck command:

(psamm-env) $ psamm-model chargecheck

This E. coli SBML model does not contain charge information for the compounds. A sample output is provided below
to show what the results would look like for a charge imbalanced model. The output from the charge check will
display any reactions that are charge imbalanced and show what the imbalance is and then show the reaction equation.
This can be used to quickly check for any missed inconsistencies and identify reactions and compounds that should be
looked at more closely to confirm their correctness.

rxnl2510 1.0 |[ATP[c] | + |Pantothenate[c]| => |4-phosphopantothenatelc]| +

< |H+[c]| + |ADP[c]|

rxnl2825 4.0 |hemeO[c] | + |H20[c]| => |Heme[c]| + (4) |H+[c]|

rxnl3643 1.0 |ADP-glucose|[c] | => |Glycogen|[c]| + |H+[c]| + |ADP[c]|

rxnl3710 6.0 (5) ID-Glucose(c]| + (4) |ATP[c]| => |Glycogen[c]l| + (4) |H+[c]|_

—+ (4) |Phosphatelc]| + (4) |H20[c]| + |ADP[c]|
INFO: Unbalanced reactions: 94/1093
INFO: Unchecked reactions due to missing charge: 0/1093

Flux Consistency Checking

The flux consistency checking function can be used to identify reactions that cannot carry flux in the model. This tool
can be used as a curation tool as well as an analysis tool. In this tutorial it will be highlighted for the curation aspects
and later its use in flux analysis will be demonstrated.

To run a flux consistency check on the model use the f1uxcheck command:

(psamm-env) $ psamm-model fluxcheck —--unrestricted
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The unrestricted option with the command will tell PSAMM to remove any limits on the exchange reactions. This
will tell you which reactions in the model can carry flux if the model is given all compounds in the media freely. This
can be helpful for identifying which reactions may not be linked to other parts of the metabolism and can be helpful
in identifying gaps in the model. In this case it can be seen that no reactions were identified as being inconsistent.

In some situations there are pathways that might be modeled but not necessarily connected to the other aspects of
metabolism. A common occurrence of this is with vitamin biosynthesis pathways that are not incorporated into the
biomass in the model. f1uxcheck will identify these as being flux inconsistent but the modeler will need to identify
if this is due to incomplete information on the pathways or if it is due to some error in the formulation of the reactions.

PSAMM will tell you how many exchange reactions cannot be used as well as how many internal model reactions
cannot carry flux. PSAMM will also list the reactions and the equations for the reactions to make curation of these
reactions easier.

Above the £ luxcheck command was used with the —unrestricted option which allowed the exchange reactions to all
be active. This command can also be used to see what reactions cannot carry flux when specific media are supplied.
To run this command on the network with the media that is specified in the media file run the following command:

(psamm-env) $ psamm-model fluxcheck

INFO: Model: Ecoli_core_model

INFO: Model Git wversion: 9812080

INFO: Using flux bounds to determine consistency.

EX_fru_e |D-Fructose|[e]

| <=>
EX_fum_e |Fumarate[e] | <=>
EX_glc_e |D-Glucose[e] | <=

>

EX_gln_I_e |L-Glutamine[e] | <=>

EX_mal_1_e |L-Malate[e] | <=>

FRUpts2 |[D-Fructose[e] | + |Phosphoenolpyruvate[c]| => |D-Fructose—-6-phosphate|c] |
—+ |Pyruvate(c] |

[

FUME2_2 (2) |H[e]l| + |Fumaratele]l| => (2) |H[c]| + |Fumarate[c]|

GLCpts |Phosphoenolpyruvate([c] | + |D-Glucosele]| => |Pyruvate[c]| + |D-Glucose—-6—
—phosphate[c] |

GLNabc |[ATP[c] | + |L-Glutamine[e]| + [H20[c]| => |L-Glutamine([c]| + [|ADP[c]| +_
—|H[c]| + |Phosphate[c]|

MALtZ_2 |L-Malate[e] | + (2) |H[e]| => |L-Malate[c]| + (2) |H[c]]|

INFO: Model has 5/80 inconsistent internal reactions (0 disabled by user)
INFO: Model has 5/21 inconsistent exchange reactions (0 disabled by user)

In this case it can be seen that there are various exchange reactions blocked as well as various internal reactions related
to other carbon metabolic pathways. The current model should only be supplying mannitol as a carbon source and
this would mean that these other carbon pathways would be blocked in this condition. In this way, you can use the
fluxcheck command to see what reactions are specific to certain metabolic pathways and environmental conditions.

2.3.5 Gap Identification in PSAMM

In addition to inconsistencies found within individual reactions there can also be global inconsistencies for the reac-
tions within a metabolic network. These include metabolites that can be produced but not consumed, ones that can be
consumed by reactions but are not produced, and reactions that cannot carry flux in a model. PSAMM includes various
functions for the identification of these features in a network including the functions gapcheck and fluxcheck.
Additionally the functions gapfill and fastgapfill can be used to help fill these gaps that are present through
the introduction of additional reactions into the network.
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Gapcheck in PSAMM

The gapcheck function in PSAMM can be used to identify dead end metabolites in a metabolic network. These dead
end metabolites are compounds in the metabolic model that can either be produced but not consumed or ones that
can be consumed but not produced. Reactions that contain these compounds cannot carry flux within a model and are
often the result of knowledge gaps in our understanding of metabolic networks.

The gapcheck function allows the use of three methods for the identification of these dead end metabolites within a
metabolic network. These are the prodcheck, sinkcheck, and gapfind methods.

The prodcheck method is the most straightforward of these methods and can be used to identify any compounds
that cannot be produced in the metabolic network. It will iterate through the reactions in a network and maximize each
one. If the reaction can carry a flux then the metabolites involved in the reaction are not considered to be blocked.

To use this function the following command can be run:

(psamm-env) $ psamm-model gapcheck —--method prodcheck

The function will produce output like the following that lists out any metabolites in the model that cannot be produced
in this condition:

frule] D-Fructose
fum[e] Fumarate
glc_Dle] D-Glucose
gln_L[e] L-Glutamine
mal_L[e] L-Malate

INFO: Blocked compounds: 5

This result indicates that the following metabolites currently cannot be produced in the model. This only tells part
of the story though, as this function was run with the defined media that was set for the model. As a result there are
gaps identified like, ‘D-Glucose’, that will not be considered gaps in other conditions. To do a global check using this
function on the model without restrictions on the media the following command can be used:

(psamm-env) $ psamm-model gapcheck —--method prodcheck —--unrestricted-exchange

The unrestricted tag in this function will temporarily set all of the exchange reaction bounds to be -1000 to 1000
allowing all nutrients to be either taken up or produced. Gap-checking in this condition will allow for the identification
of gaps that are not media dependent and may instead be the result of incomplete pathways and knowledge gaps.

The second method implemented in the gapcheck function is the sinkcheck method. This method is similar to
prodcheck but is implemented in a way where the flux through each introduced sink for a compound is maximized.
This ensures that the metabolite can be produced in excess from the network for it to not be considered a dead end
metabolite.

(psamm-env) $ psamm-model gapcheck —--method sinkcheck -—-unrestricted-exchange

The last method implemented in the gapcheck function is the gapf i nd method. This method is an implementation
of a previously published method to identify gaps in metabolic networks [Kumar(7]. This method will use a network
based optimization to identify metabolites with no production pathways present.

(psamm-env) $ psamm-model gapcheck —--method gapfind --unrestricted-exchange

These methods included in the gapcheck function can be used to identify various kinds of ‘gaps’ in a metabolic
model network. PSAMM also includes three functions for filling these gaps through the addition of artificial reactions
or reactions from a supplied database. The functions gapfill, fastgapfill, and completepath can be used
to perform these gapfilling procedures during the process of generating and curating a model.
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GapfFill

The gapfill function in PSAMM can be used to apply a GapFill algorithm based on [Kumar(O7] to a metabolic
model to search for and identify reactions that can be added into a model to unblock the production of a specific
compound or set of compounds. To provide an example of how to utilize this gapfill function a version of the E.
coli core model has been provided in the tutorial-part-2/Gapfilling_Model/ directory. In this directory is the E. coli
core model with a small additional, incomplete pathway, added that contains the following reactions:

- id: rxnl
equation: succ_c[c] => alc]
- id: rxn3
equation: b[c] => c[c] + dlc]

This small additional pathway converts succinate to an artificial compound ‘a’. The other reaction can convert com-
pound ‘b’ to ‘c’ and ‘d’. There is no reaction to convert ‘a’ to ‘b’ though, and this can be considered a metabolic gap.
In an additional reaction database, but not included in the model itself, is an additional reaction:

* id: rxn2 equation: a[c] => b[c]

This reaction, if added would be capable of unblocking the production of ‘c’ or ‘d’, by allowing for the conversion of
compound ‘a’ to ‘b’. In most cases when performing gap-filling on a model a larger database of non-model reactions
could be used. For this test case the production of compound ‘d[c]’ could be unblocked by running the following
command:

(psamm-env) psamm-model gapfill —--compound d[c]

This would produce an output that first lists all of the reactions from the original metabolic model. Then lists the
included gap-filling reactions with their associated penalty values. And lastly will list any reactions where the gap-
filling result suggests that the flux bounds of the reaction be changed. A sample of the reaction is shown below:

TPI Model 0 Dihydroxyacetone-phosphate[c] <=> Glyceraldehyde-3-phosphate[c]

rxnl Model 0 Succinate[c] => alc]
rxn3 Model 0 blc] => c[c] + d[c]
rxn2 Add 1 alc] => blc]

Some additional options can be used to refine the gap-filling. The first of these options is ——no-implicit-sinks
option that can be added to the command. If this option is used then the gap-filling will be performed with no implicit
sinks for compounds, meaning that all compounds produced need to be consumed by other reactions in the metabolic
model. By default, if this option is not used with the command, then implicit sinks are added for all compounds in the
model meaning that any compound that is produced in excess can be removed through the added sinks.

The other way to refine the gap-filling procedure is through defining specific penalty values for the addition of reactions
from different sources. Penalties can be set for specific reactions in a gap-filling database through a tab separated file
provided in the command using the ——penalty option. Additionally penalty values for all database reactions can be
set using the ——db-penalty option followed by a penalty value. Similarly penalty values can be assigned to added
transport reactions using the ——tp-penalty option and to added exchange reactions using the ——ex-penalty
option. An example of a command that applies these penalties to a gap-filling simulation would be like follows:

(psamm-env) $ psamm-model gapfill —--compound d[c] —--ex-penalty 100 --tp-penalty 10 —--
—db-penalty 1

The gapfill function in PSAMM can be used through the model construction process to help identify potential new
reactions to add to a model and to explore how metabolic gaps effect the capabilities of a metabolic network.
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FastGapFill

The fastgapfill function in PSAMM is different gap-filling method that uses the FastGapkFill algorithm to attempt
to generate a gap-filled model that is entirely flux consistent [Thiele14]. The implementation of this algorithm in
PSAMM can be utilized for unblocking an entire metabolic model or for unblocking specific reactions in a network.
Often times unblocking all of the reactions in a model at the same time will not produce the most meaningful and easy
to understand results so only performing this function on a subset of reactions is preferable. To do this the ——subset
option can be used to provide a file that contains a list of reactions to unblock. In this example that list would look like
this:

rxnl
rxn3

This file can be provided to the command to unblock the small artificial pathway that was added to the E. coli core
model:

(psamm-env) $ psamm-model fastgapfill —--subset subset.tsv

In this case the output from this command will show the following:

TPI Model 0 Dihydroxyacetone-phosphate[c] <=> Glyceraldehyde-3-phosphate[c]

rxnl Model 0 Succinate[c] => alc]

rxn3 Model 0 blc] => c[c] + d[c]

EX_cle] Add 1 cle] <=>

EX_d[e] Add 1 dle] <=>

EX_succ_c[e] Add 1 Succinatel[e] <=>

TP_c[c]_cle] Add 1 clc] <=> cle]

TP_d[c]_dl[e] Add 1 dlc] <=> dl[e]

TP_succ_c[c]_succ_c[e] Add 1 Succinate[c] <=> Succinatele]
rxn2 Add 1 alc] => blc]

The output will first list the model reactions which are labeled with the ‘Model’ tag in the second column of the output.
PSAMM will list out any artificial exchange and transporters, as well as any gap reactions included from the larger
database. These will be labeled with the Add tag in the second column. When compared to the gapfi11 results from
the previous section it can be seen that the fastgapfill result suggests some artificial transporters and exchange
reactions for certain compounds. This is due to this method trying to find a flux consistent gap-filling solution.

Penalty values can be assigned for different types of reactions in the same way that they are in the gapfill
command. With ——ex-penalty for artificial exchange reactions, ——tp-penalty for artificial transporters,
-—db-penalty for new database reactions, and penalties on specific reactions through a penalty file provided with
the ——penalty option.

2.3.6 Search Functions in PSAMM

psamm-model includes a search function that can be used to search the model information for specific compounds
or reactions. To do this the search function can be used. This can be used for various search methods. For example to
search for the compound named fructose the following command can be used:

(psamm-env) $ psamm-model search compound —--name 'Fructose'
INFO: Model: Ecoli_core_model

INFO: Model Git version: db22229

id: fru_c

formula: C6H1206

name: Fructose

Defined in ./compounds.yaml:?:?
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To do the same search but instead use the compound ID the following command can be used:

(psamm-env) $ psamm-model search compound —--id 'fru_c'

These searches will result in a printout of the relevant information contained within the model about these compounds.
In a similar way reactions can also be searched. For example to search for a reaction by a specific ID the following
command can be used:

’ (psamm-env) $ psamm-model search reaction —--id 'FRUKIN'

Or to search for all reactions that include a specific compound the following command can be used:

’ (psamm-env) $ psamm-model search reaction —--compound 'manni[c]'

2.3.7 Duplicate Reaction Checks

An additional searching function called Dupcheck is also included in PSAMM. This function will search through a
model and compare all of the reactions in the network to each other. Any reactions that have all of the same metabolites
consumed and produced will then be reported. This can be a helpful function to use if there a multiple people working
on the construction of a model as it allows for an automated checking that two individuals did not add the same reaction
to the reconstruction. The dupcheck function can be run through the following command:

(psamm-env) $ psamm-model dupcheck

The additional tags ——compare-direction and ——compare-stoichiometry can be added to the command
to take into account the reaction directionality and metabolite stoichiometry when comparing two different reactions.

2.4 Constraint Based Analysis with PSAMM

This tutorial will go over how to use the constraint based analysis methods that are included in PSAMM. These
methods can be used to perform various simulations of growth with metabolic models. These simulations can be used
to explore growth phenotypes, nutrient utilization, and gene essentiality.

e Tutorial Materials

* Constraint-based Flux Analysis with PSAMM

* FBA in PSAMM

2.4.1 Tutorial Materials

The materials used in the part of the tutorial can be found in the tutorial-part-3 directory in the psamm-tutorial
repository. This directory contains a copy of the E. coli core metabolic model that has been used in the other tutorials.
This model can be used to run all of the simulations in this part of the tutorial. In addition to the model the virtual
environment where PSAMM has been installed will need to be activated to run the psamm-model commands. For
instructions on how to install or activate PSAMM in a virtual environment reference the Installation and Materials
section of the tutorial.

To access the materials needed to run the following commands go to the E_coli_yaml folder in the tutorial-part-3
folder.
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(psamm-env) $ cd <PATH>/tutorial-part-3/E_coli_yaml

2.4.2 Constraint-based Flux Analysis with PSAMM

Along with the various curation tools that are included with PSAMM there are also various flux analysis tools that
can be used to perform simulations on the model. This allows for a seamless integration of the model development,
curation, and simulation processes.

There are various options that you can change in these different flux analysis commands. Before introducing the
specific commands these options will be detailed here.

Loop Minimization in PSAMM

First, you can choose the options for loop minimization when running constraint-based analyses. This can be done
by using the ——loop—-removal option. There are three options for loop removal when performing constraint based
analysis:

none No removal of loops
tfba Removes loops by applying thermodynamic constraints
IImin Removes loops by minimizing the L1 norm (the sum of absolute flux values)

For example, you could run flux balance analysis with thermodynamic constraints:

’(psamm—env) $ psamm-model fba --loop-removal=tfba
or without:
’(psamm—env) $ psamm-model fba --loop-removal=none

Choosing Linear Programming Solvers

You also have the option to set which solver you want to use for the linear programming problems. To view the solvers
that are currently installed the following command can be used:

(psamm-env) $ psamm-list-lpsolvers

By default PSAMM will use CPLEX if it available but if you want to specify a different solver you can do so using
the ——solver option. For example to select the Gurobi solver during an FBA simulation you can use the following
command:

(psamm-env) $ psamm-model fba --solver name=gurobi

If multiple solvers are installed and you do not want to use the default solver, you will need to set this option for every
simulation run.

Note: The QSopt_ex solver does not support integer linear programming problems. This solver can be used with any
commands but you will not be able to run the simulation with thermodynamic constraints.
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Other Global Options

Another option that can be used with the various flux analysis commands is the ——epsilon option. This option can
be used to set the minimum value that a flux needs to be above to be considered non-zero. By default PSAMM will
consider any number above 10~° to be non-zero. An example of changing the epsilon value with this option during
an FBA simulation is:

’(psamm—env) $ psamm-model fba --epsilon 0.0001

These various options can be used for any of the flux analysis functions in PSAMM by adding them to the command
that is being run. A list of the functions available in PSAMM can be viewed by using the command:

’(psammfenv> $ psamm-model --help

The options for a specific function can be viewed by using the command:

’(psamm—env) $ psamm-model <command> --help

2.4.3 FBA in PSAMM

PSAMM allows for the integration of the model development and curation process with the simulation process. In
this way changes to a metabolic model can be immediately tested using the various flux analysis tools that are present
in PSAMM. In this tutorial, aspects of the E. coli core model [Orth11] will be expanded to demonstrate the various
functions available in PSAMM and throughout these changes the model will be analyzed with PSAMM’s simulation
functions to make sure that these changes are resulting in a functional model.

Flux Balance Analysis

Flux Balance Analysis (FBA) is one of the basic methods that allows you to quickly examine if the model is viable
(i.e. can produce biomass). PSAMM provides the fba function in the psamm-model command to perform FBA on
metabolic models. For example, to run FBA on the E. coli core model first make sure that the current directory is the
E_coli_yaml/ directory using the following command:

’(psamm—env) $ cd <PATH>/psamm-tutorial/E_coli_yaml/

Then run FBA on the model with the following command.

’(psamm—env) $ psamm-model fba

Note that the command above should be executed within the folder that stores the model . yaml file. Alternatively,
you could run the following command anywhere in your file system:

’(psamm—env) $ psamm-model --model <PATH-TO-MODEL.YAML> fba

The following is a sample of some output from the FBA command:

INFO: Model: Ecoli_core_model

INFO: Model Git version: 9812080

INFO: Using Biomass_Ecoli_core_w_GAM as objective

INFO: Loop removal disabled; spurious loops are allowed

INFO: Setting feasibility tolerance to 1le-09

INFO: Setting optimality tolerance to 1le-09

INFO: Solving took 0.05 seconds

ACONTa 6.00724957535 |Citratelc]| <=> |cis—Aconitate([c]| + |H20([c] | p0118 or

KWl127 4
OTZ70

(continues on next page)
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ACONTDb 6.00724957535 |cis—Aconitate[c] | + |H20[c]| <=> |Isocitratelc]| .
—b0118 or bl276
AKGDH 5.06437566148 | 2-Oxoglutarate[c]| + |Coenzyme-Alc]]|...

INFO: Objective flux: 0.873921506968
INFO: Reactions at zero flux: 47/95

At the beginning of the output of psamm-model commands information about the model as well as information
about simulation settings will be printed. At the end of the output PSAMM will print the maximized flux of the
designated objective function. The rest of the output is a list of the reaction IDs in the model along with their fluxes,
and the reaction equations represented with the compound names. This output is human readable because the reactions
equations are represented with the full names of compound. It can be saved as a tab separated file that can be sorted
and analyzed quickly allowing for easy analysis and comparison between FBA in different conditions.

By default, PSAMM fba will use the biomass function designated in the central model file as the objective function.
If the biomass tag is not defined in a model.yaml file or if you want to use a different reaction as the objective
function, you can simply specify it using the ——objective option. For example to maximize the citrate synthase
reactions, CS, the command would be as follows:

(psamm-env) $ psamm-model fba --objective=CS

Flux balance analysis will be used throughout this tutorial as both a checking tool during model curation and an
analysis tool. PSAMM allows you to easily integrate analysis tools like this into the various steps during model
development.

Flux Variability Analysis

Another flux analysis tool that can be used in PSAMM is flux variability analysis. This analysis will maximize the
objective function that is designated and provide a lower and upper bound of the various reactions in the model that
would still allow the model to sustain the same objective function flux. This can provide insights into alternative
pathways in the model and allow the identification of reactions that can vary in use.

To run FVA on the model use the following command:

(psamm-env) $ psamm-model fva

EX_pi_e -3.44906664664 -3.44906664664 |Phosphatele]| <=>

EX_pyr_e -0.0 -0.0 |Pyruvatele] | <=>

EX_succ_e -0.0 -0.0 | Succinatee] | <=>

FBA 7.00227721609 7.00227721609 |[D-Fructose-1-6-bisphosphate[c] | <=>_

— |Dihydroxyacetone-phosphate[c] | + |Glyceraldehyde-3-phosphate(c] |

FBP 0.0 0.0 |ID-Fructose—-1-6-bisphosphate[c]| + |H20[c]| => |D-Fructose-6-—
—phosphate[c]| + |Phosphatelc]|

FORt2 0.0 0.0 |Formate[e]| + |H[e]| => |Formate[c]| + |H[c]]|

The output shows the reaction IDs in the first column and then shows the lower bound of the flux, the upper bound of
the flux, and the reaction equations. With the current conditions the flux is not variable through the equations in the
model. It can be seen that the upper and lower bounds of each reaction are the same. If another carbon source was
added in though it would allow for more reactions to be variable. For example if glucose was added into the media
along with mannitol then the results might appear as follows:

EX_glc_e -10.0 -2.0 |D-Glucose[e] | <=>
EX_manni_e -9.0 -3.0 |[Mannitol[e] | <=>

(continues on next page)

2.4. Constraint Based Analysis with PSAMM 37




PSAMM Documentation, Release 1.1

(continued from previous page)

MANNIPTS 3.0 9.0 |[Mannitol[e] | + |Phosphoenolpyruvate[c]| => |[Mannitol 1-
—phosphate([c]| + |Pyruvatelc] |
GLCpts 2.0 10.0 |[D-Glucose[e] | + |Phosphoenolpyruvatelc]| =>_

— |Pyruvate[c] | + |D-Glucose-6-phosphatel[c] |

It can be seen that in this situation the lower and upper bounds of some reactions are different indicating that their flux
can be variable. This indicates that there is some variability in the model as to how certain reactions can be used while
still maintaining the same objective function flux.

Robustness Analysis

Robustness analysis can be used to analyze the model under varying conditions. Robustness analysis will maximize
a designated reaction while varying the flux through another designated reaction. For example, you could vary the
amount of oxygen present while trying to maximize the biomass production to see how the model responds to different
oxygen supply. You can specify the number of steps that will be performed in the robustness as well as the reaction
that will be varied during the steps.

By default, the reaction that is maximized will be the biomass reaction defined in the model . yaml file but a different
reaction can be designated with the optional ——objective option. The flux bounds of this reaction will then be
obtained to determine the lower and upper value for the robustness analysis. These values will then be used as the
starting and stopping points for the robustness analysis. You can also set a customized upper and lower flux value of
the varying reaction using the ——1lower and ——upper options.

For this model the robustness command will be used to see how the model responds to various oxygen conditions with
mannitol as the supplied carbon source. To run the robustness command use the following command:

(psamm-env) $ psamm-model robustness --steps 1000 EX_o2_e

The output will contain two columns. The first column will be the flux of the varied reaction, in this case the EX_02_e
reaction for oxygen exchange. The second shows the flux of the biomass reaction for the model. The output will look
like this:

-63.958958959 0.0238161275506
-63.8938938939 0.0253046355225
-63.8288288288 0.0267931434944
-63.7637637638 0.0282816514663
-63.6986986987 0.0297701594383
-63.6336336336 0.0312586674102
-63.5685685686 0.0327471753821
-63.5035035035 0.034235683354

-63.4384384384 0.0357241913259

If the biomass reaction flux is plotted against the oxygen uptake it can be seen that the biomass flux is low at the
highest oxygen uptake, reaches a maximum at an oxygen uptake of about 24, and then starts to decrease with low
oxygen uptake.
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Biomass Flux versus Oxygen Exchange Flux
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If a more detailed analysis of internal fluxes is desired the —all-reaction-fluxes tag can be added to the command. This
will print out all of the internal reaction fluxes for each step in the robustness analysis. The first column printed will
be the reaction ID. The second column will be the varying reaction’s flux and the last column will be the flux of the
reaction listed in the first column. This can be used to look at the effects of a reaction on internal fluxes in the network.
The command to run this would be the following:

(psamm-env) $ psamm-model robustness --all-reaction-fluxes —--steps 1000 EX_o2_e

And the output for this command will look like the following:

G6PDH2r -63.958958959 0.0

AKGDH -63.958958959 0.0

GLNS -63.958958959 0.00608978381469
ADK1 -63.958958959 0.0

PYRt2r -63.958958959 0.0

EX_co2_e -63.958958959 58.986492784
ATPM -63.958958959 8.39

SUCCt2_2 -63.958958959 0.0

PIt2r -63.958958959 0.0876123884204
EX_lac_D_e -63.958958959 0.0

Deletion Simulations with PSAMM

Gene Deletion

The genedelete command can be used to perform gene deletions in a model and test what effects those deletions
have. This command can be used to quickly test if certain genes are essential in the network. The command will
take a list of genes in a separate file and will then go through all of the gene associations in the model to determine
what reactions require that gene to be present. This uses the gene association logic to determine if the removal of the
specified genes would knock out that function. For example if we had the following two reactions:

- id: RXN_1
genes: g0001 and g0002
equation: '|cpd_ alc]| <=> |cpd_blc]|'

(continues on next page)

2.4. Constraint Based Analysis with PSAMM 39




PSAMM Documentation, Release 1.1

(continued from previous page)

— id: RXN_2
genes: g0001 or g0003
equation: '|[cpd_alc]| <=> |cpd[c] |’

Both reactions are associated with the gene ‘g0001’ but RXN_1 has an ‘and’ association while RXN_2 has an ‘or’
association. If the gene ‘g0001° were to be deleted from the network RXN_1 would no longer have the required genes
for it to be present since both genes are required. RXN_2 would still be satisfied since it would only require one of
the two genes to be present. The gene delete command will do this automatically and for the entire network making it
much easier to do these kinds of simulations. The gene delete command can be run with the following command.

(psamm-env) $ psamm-model genedelete --gene bl779

This will produce a flux balance analysis result with a model that has any reactions for which b0118 is necessary
limited to zero flux. The output will show a percentage of the biomass flux of the wild type model that can be
produced by the deletion model.

INFO: Objective reaction after gene deletion has flux 0.0
INFO: Objective reaction has 0.00% flux of wild type flux

Random Minimal Network Analysis

The randomsparse command can be used to look at gene essentiality in the metabolic network. To use this function
the model must contain gene associations for the model reactions. This function works by systematically deleting
genes from the network, then evaluating if the associated reaction would still be available after the gene deletion, and
finally testing the new network to see if the objective function flux is still above the threshold for viability. If the flux
falls too low then the gene is marked as essential and kept in the network. If the flux stays above the threshold then
the gene will be marked as non-essential and removed. The program will randomly do this for all genes until the only
ones left are marked as essential. This can be done using the ——type=genes option with the randomsparse
command:

(psamm-env) $ psamm-model randomsparse —--type=genes 90%

This will produce an output of the gene IDs with a 1 if the gene was kept in the simulation and a O if the gene was
deleted. Following the list of genes will be a summary of how many genes were kept out of the total as well as list of
the reaction IDs that made up the minimal network for that simulation. An example output can be seen as follows:

INFO: Essential genes: 58/137
INFO: Deleted genes: 79/137
b0008 0

b0114
0115
b0116
b0118
0351
b0356
b0451
0474
0485

el el eolNoNeolNol

The random minimal network analysis can also be used to generate a random subset of reactions from the model that
will still allow the model to maintain an objective function flux above a user-defined threshold. This function works
on the same principle as the gene deletions but instead of removing individual genes, reactions will be removed. To
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run random minimal network analysis on the model use the randomsparse command with the -——type=reactions
option. The last parameter for the command is a percentage of the maximum objective flux that will be used as the
threshold for the simulation.

(psamm-env) $ psamm-model randomsparse -—-type=reactions 95%

FRUKIN 1

MANNI1PDEH O
MANNI1PPHOS 1
MANNIDEH 1
MANNIPTS 1

The output will be a list of reaction IDs with either a 1 indicating that the reaction was essential or a zero indicating it
was removed.

Due to the random order of deletions during this simulation it may be helpful to run this command numerous times in
order to gain a statistically significant number of datapoints from which a minimal essential network of reactions can
be established.

In this case the program deleted the MANNIPDEH reaction blocking the mannitol 1-phosphate to fructose 6-phosphate
conversion. In this case the reactions in the other side of the mannitol utilization pathway should all be essential.

You can also use the randomsparse command to randomly sample the exchange reactions and generate pu-
tative minimal exchange reaction sets. This can be done by using the ——type=exchange option with the
randomsparse command:

(psamm-env) $ psamm-model randomsparse —--type=exchange 90%

It can be seen that when this is run on this small network the mannitol exchange as well as some other small molecules
are identified as being essential to the network:

EX_ac_e
EX_acald_e
EX_akg_e
EX_co2_e
EX_etoh_e
EX_for_e
EX_fru_e
EX_fum_e
EX_glc_e
EX_gln_L_e
EX_glu_I_e
EX_h2o0_e
EX_h e
EX_lac_D_e
EX_mal_I_e
EX_manni_e
EX_nh4d_e
EX_o02_e
EX_pi_e
EX_pyr_e
EX_succ_e
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2.5 Reactant/Product Pair Prediction and Visualization Using Find-
PrimaryPairs

This tutorial will go over how to use the primarypairs and PSAMM-Vis functions in PSAMM. These functions can
be used to predict reactant/product pairs in metabolic models and to use these predictions to generate visualizations of
metabolic networks.

e Materials

* Reactant/Product Pair Prediction using PSAMM

* Visualizing Models using PSAMM-Vis

2.5.1 Materials

For information on how to install PSAMM and the associated requirements, as well how to download the materials
required for this tutorial, you can reference the Installation and Materials section of the tutorial.

In addition to the basic installation of PSAMM, the visualization function uses the Graphviz program to generate
images from the text-based graph format produced by the vis command. Graphviz version > 0.8.4 must be installed
along with the Graphviz python bindings.

Note: Graphviz download: https://www.graphviz.org/download/

Graphviz python bindings: https://pypi.org/project/graphviz/ or (psamm-env) $ pip install graphviz

For this part of the tutorial, we will be using a modified version of the E. coli core metabolic model that has been
used in the other sections of the tutorial. This model has been modified to add in a new pathway for the utilization of
mannitol as a carbon source. To access this model and the other files needed you will need to go into the tutorial-part-4
folder located in the psamm-tutorial folder.

(psamm-env) $ cd <PATH>/tutorial-part-4/

Once in this folder, you should see a folder called E_coli_yaml which contains all of the required model files, and
a directory called additional_files/ that contains additional input files that will be used to run the commands in this
tutorial.

To run the following tutorials, go into the E_coli_yaml/ directory:

(psamm-env) $ cd E_coli_yaml/

2.5.2 Reactant/Product Pair Prediction using PSAMM

Metabolism can be broken down into individual metabolic reactions, which transfer elements between different
metabolites. Take the following reaction as an example:

Acetate + ATP <=> Acetyl-Phosphate + ADP

This reaction is catalyzed by the enzyme Acetate Kinase, which can convert acetate to acetyl-phosphate through the
addition of a phosphate group from ATP. A basic understanding of phosphorylation and the biological role of ATP
makes it possible to manually predict that the primary element transfers for non hydrogen elements are as follows:
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Reactant/Product Pair Element Transfer

Acetate -> Acetyl-Phosphate | carbon backbone

ATP -> ADP carbon backbone and phosphates
ATP -> Acetyl-Phosphate phosphate group

Acetate -> ADP None

While manually inferring this for one or two simple reactions is possible, genome scale models often contain hundreds
or thousands of reactions, making manual reactant/product pair prediction impractical. In addition to this, reaction
mechanisms are often not known, nor are patterns of element transfer within reactions available for most metabolic
reactions.

To address this problem the FindPrimaryPairs algorithm [Steffensenl7] was developed and implemented within the
PSAMM function primarypairs.

The FindPrimaryPairs is an iterative algorithm which is used to predict element transferring reactant/product pairs
in genome scale models. FindPrimaryPairs relies on two sources of information, which are generally available in
genome scale models: reaction stoichiometry and metabolite formulas. From this information, FindPrimaryPairs
can make a global prediction of element transferring reactant/product pairs without any additional information about
reaction mechanisms.

Basic Use of the primarypairs Command

The primarypairs command in PSAMM can be used to perform an element transferring pair prediction using the
FindPrimaryPairs algorithm. The basic command can be run as the following:

(psamm-env) $ psamm-model primarypairs —--—exclude Q../additional_files/exclude.tsv

This function often requires a file to be provided through the ——exclude option. This file is a single column list of
reaction IDs of any reactions the user wants to remove from the model when doing the reactant/product pair prediction.
the file path should be included in the command with a ‘@’ preceding it. Typically, this file should contain any
artificial reactions that might be in the model such as Biomass objective reactions, macromolecule synthesis reactions,
etc. While these reactions can be left in the model, the fractional stoichiometries and presence of artificial metabolites
in the reaction can cause the algorithm to take a much longer time to find a solution. In this example of the E. coli core
model the only reaction like this is the biomass reaction Biomass_Ecoli_core_w_GAM, which this is the only
reaction listed in the exclude.tsv file.

Note: The FindPrimaryPairs algorithm relies on metabolite formulas to make its reactant/product pair predictions. If
any reaction contains a metabolite that does not have a formula then it will be ignored.

The output of the above command will look like the following:

INFO: Model: Ecoli_core_model

INFO: Model version: 3ac8db4

INFO: Using default element weights for fpp: C=1, H=0, *=0.82
INFO: Iteration 1: 79 reactions...

INFO: Iteration 2: 79 reactions...

INFO: Iteration 3: 8 reactions...

GLNS nh4_c[c] h clc] H

FBA fdp_clc] g3p_clc] C3H506P

ME2 mal_I_c[c] nadph_cc] H

MANNI1PDEH mannilp[c] nadh_c[c] H

PTAr accoa_clc] coa_clc] C21H32N7016P3S
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Basic information about the model name and version is provided in the first few lines. In the next line, the element
weights used by the FindPrimaryPairs algorithm are listed. Then, as the algorithm goes through multiple iterations, it
will print out the iteration number and how many reactions it is still figuring out the pairing for. A four column table
is then printed out that contains the following columns from left to right: Reaction ID, reactant ID, product ID, and
elements transferred.

From this output, the Acetate Kinase reaction from the above example can be compared to the manual prediction of
the element transfer. The reaction ID for this reaction is ACKr:

ACKr atp_clc] adp_clc] C10H12N5010P2
ACKr atp_clc] actp_clc] O3P
ACKr ac_clc] actp_clc] C2H302

From this result it can be seen that the prediction contains the same three element transferring pairs as the above
manual prediction; ATP -> ADP, ATP -> Acetyl-Phosphate, Acetate to Acetyl-Phosphate.

This basic usage of the primarypairs command allows for quick and accurate prediction of element transferring
pairs in any of the reactions in a genome scale model. Additionally, the function also has a few other options that can
be used to refine and adjust how the pair prediction work.

Modifying Element Weights

The metabolite pair prediction relies on a parameter called element weight to inform the algorithm about what chemical
elements should be considered more or less important when determining metabolite similarity. An example of how
this might be used can be seen in the default element weights that are reported when running primarypairs.

INFO: Using default element weights for fpp: C=1, H=0, »=0.82

These element weights are the default weights used when running primarypairs with the FindPrimaryPairs algo-
rithm. In this case, a weight of 1 is given to carbon. Because carbon forms the structural backbone of many metabolites
this element is given the most weight. In contrast, hydrogen is not usually a major structural element within metabo-
lites. This leads to a weight of 0 being given to hydrogen, meaning that it is not considered when comparing formulas
between two metabolites. By default, all other elements are given an intermediate weight of 0.82.

These default element weights can be adjusted using the ——weight s command line argument. For example, to adjust
the weight of the element nitrogen while keeping the other elements the same as the default settings, you could use the
following command:

(psamm-env) $ psamm-model primarypairs --weights "N=0.2,C=1,H=0,*=0.82" --exclude @../
—sadditional files/exclude.tsv

In the case of a small model like the E. coli core model, the results of primarypairs will likely not change unless the
weights are drastically altered. However, changes could be seen in larger models, especially if the models include
many reactions related to non-carbon metabolism such as sulfur or nitrogen metabolism.

Report Element

By default, the primarypairs result is not filtered to show transfers of any specific element. In certain situations it
might be desirable to only get a subset of these results based on if the reactant/product pair transfers a target element.
To do this, the option ——report—-element can be used. In many cases, it might be desirable to only report carbon
transferring reactant/product pairs, to do this run the following on the E. coli model.

(psamm-env) $ psamm-model primarypairs --report-element C —-exclude @Q../additional_
—~files/exclude.tsv

If the predicted pairs are looked at for one of the mannitol pathway reactions, MANNIDEH, the following can be seen:
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MANNIDEH manni [c] fru clc] C6H1206
MANNIDEH nad_c|[c] nadh_c|[c] C21H26N7014P2

If this result is compared to the results without the ——report-element C option, it can be seen that when there
are additional transfers in this reaction, but they only involve hydrogen.

MANNIDEH manni [c] nadh_c|[c] H

MANNIDEH manni[c] h_clc] H

MANNIDEH manni [c] fru clc] C6H1206
MANNIDEH nad_c[c] nadh_c[c] C21H26N7014P2

Pair Prediction Methods

Two reactant/product pair prediction algorithms are implemented in the PSAMM primarypairs command. The
default algorithm is the FindPrimaryPairs algorithm. The other algorithm that is implemented is the Mapmaker
algorithm. These algorithms can be chosen through the ——method argument.

$ psammm-model primarypairs --method fpp
or
$ psamm-model primarypairs —--method mapmaker

2.5.3 Visualizing Models using PSAMM-Vis

PSAMM-Vis, as implemented in the vis command in PSAMM, can be used to convert text-based YAML models to
graph-based representations of the metabolism. The graph-based representation contains two sets of nodes: one set
representing the metabolites in the model and one set representing reactions. These nodes are connected through edges
that are determined based on element transfer patterns predicted through using the FindPrimaryPairs algorithm. The
vis command provides multiple options to customize the graph representation of the metabolism, including changing
network perspectives, customizing node labels, changing node colors, etc.

Basic Network Visualization

The basic vis command can be run through the following command:

(psamm-env) $ psamm-model vis

By default, vis relies on the FindPrimaryPairs algorithm to predict elements transferred in metabolic network. In the
vis function, the biomass reaction defined in model.yaml file will be excluded from the FindPrimaryPairs calculation
automatically, but will still be shown on the final network image. For more information of excluded reactions, see
Basic Use of the primarypairs Command.

In this version of the E. coli core model, the biomass reaction is defined in the model.yaml file, so it will be excluded
automatically from the pair prediction calculation when running vis.

By default, the command above will export three files: ‘reaction.dot’, ‘reactions.nodes.tsv’ and ‘reactions.edges.tsv’.
The first file, ‘reactions.dot’, contains a text-based representation of the network graph in the ‘dot’ language. This
graph language is used primarily by the Graphviz program to generate network images. This graph format contains
information of nodes and edges in the graph along with details related to the size, colors, and shapes that will be
used in the final network image. The ‘reactions.nodes.tsv’ and ‘reactions.edges.tsv’ files are tab separated tables that
contain the same information as the dot based graph, but in a more generic table based format that can be used with
other graph analysis and visualization software like Cytoscape.
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File ‘reactions.nodes.tsv’ contains all the information that define the graph nodes, including both reaction and com-
pound nodes. It looks like the following:

id compartment fillcolor shape style type label
13dpg_clc] c #rfd8bf ellipse filled cpd 13dpg_c/[c]
2pg_clc] c #1fd8bf ellipse filled cpd 2pg_clc]
3pg_clc] c #ffd8bf ellipse filled cpd 3pg_c[c]
6pgc_clc] c #ffd8bf ellipse filled cpd 6pgc_clc]

The file ‘reactions.edges.tsv’ contains information related to the structure of the graph. Each line in this table represents
one edge in the graph and contains the source, destination and direction (forward, back, or both) of the edge. It looks
like the following:

source target dir penwidth style
2pg_clc] PGM_1 both 1 solid
PGM_1 3pg_clc] both 1 solid
2pg_clc] ENO_1 both 1 solid

Generate Images from Text-based Graphs

Images can be generated from the ‘reactions.dot’ file by using the Graphviz program. Graphviz support multiple
image formats (PDF, PNG, JPEG, etc). For example, image file can be generated as a PDF file by using the following
Graphviz program command:

’(psamm—env) $ dot -O -Tpdf reactions.dot

An image can also be done in one step by running vis command by adding an ——image option followed by image
format (pdf, svg, eps, etc.) to the command:

’(psamm—env) $ psamm-model vis —--image pdf

The commands above both generate an image file named ‘reactions.dot.pdf’. This pdf file is a graphical representation
of what is in the ‘reactions.dot’. This graph will look like:
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In this default version of the network image, there are two sets of nodes: oval orange nodes, which represent metabo-
lites, and rectangular green nodes, which represent reactions. These nodes are connected by edges which indicate
reaction directionality.

The rest of the tutorial will detail how to modify the default version of network image to show different aspects of the
metabolism and customize the node properties. For these sections, the mannitol utilization pathway from the previous
tutorial sections will be used as an example.

Represent Different Element Flows

By default, the vis command generates a graph that shows the carbon (C) transfer in the metabolic network. In
the primarypairs tutorial section above, the element transfers in the ACKr reaction were examined to see how
the FindPrimaryPairs algorithm would predict element transfer patterns. The vis command can use these element
transfer predictions to filter edges in the network image, only edges that transfer specific element will be shown. In the
case of the ACKr reaction, if element carbon is required to be shown, then only edges of ‘Acetate -> Acetyl-Phosphate’
and ‘ATP -> ADP’ would present in the final graph. The ‘ATP -> Acetyl-Phosphate’ edge will disappear, because ATP
doesn’t transfer carbon to Acetyl-Phosphate.

Reactant/Product Pair Element Transfer

Acetate -> Acetyl-Phosphate | carbon backbone

ATP -> ADP carbon backbone, phosphates
ATP -> Acetyl-Phosphate phosphate group

Acetate -> ADP None

This type of element filtering can provide different views of the metabolic network by showing how metabolic path-
ways transfer different elements through those reactions. The mannitol utilization pathway is a multiple-step pathway
that converts extracellular mannitol to fructose 6-phosphate. This pathway also involves multiple phosphorylation and
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dephosphorylation steps. The ——element argument can be added to the the vis command to filter this pathway and
show the transfer patterns of the phosphorus in the pathway:

(psamm-model) $ psamm-model vis --element P —--image png

The resulting ‘reactions.dot.png’ file will contain the phosphorus transfer network of the E. coli core model.

Condense Reaction Nodes and Edges

By default, the vis command assigns only one reaction to each reaction node. Additionally, it allows users to con-
dense multiple reaction nodes into one node through the ——combine option, in order to reduce the number of nodes
and edges, and make the image clearer. Combine level 0 is the default, which does not collapse any nodes. Level 1
is used to condense nodes that represent the same reaction and have a common reactant or product connected. Level
2 is used to condense nodes that represent different reactions but connected to the same reactant/product pair with the
same direction (This is often seen on reactant/product pairs like ATP/ADP and NAD/NADH).

(psamm-env) $ psamm-model vis —--combine 1 --image png

Then the image will look like the figure below:
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The combine 2 option will update the image to look like the following: .. code-block:: shell

(psamm-env) $ psamm-model vis —combine 2 —image png

Rearrange graph components in the image

In some cases, the network images contain many connected components, while these components aren’t connected
with each other. This may cause the image too wide and difficult to read. To create a better view, ——array option
could be used. It can decompress graphs into their connected components, then arrange these components with spe-
cific array setting. ——array is followed by an integer, for example, ——array 2 indicates placing two connected
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components per row. For graphs that contains many small connected components, ——array 4 could be a better
option because you can get most of the important larger components in the top few rows of the image, and all the
smaller components will just be spread out below them. Example of applying this option see below:

(psamm-env) $ psamm-model vis —--image png —--array 2

Then the exported image “reactions.dot.png” will look like the figure below:

Moreover, if vis command contains ——array but doesn’t contain ——image, it will still exported the DOT file.
However, in this case, when converting DOT file to a network image, to make ——array effective, another Graphviz
program command (see below) is required instead of dot command we showed before:

(psamm-env) $ neato -0 -Tpdf -n2 reactions.dot

Show Cellular Compartments

GEMs often contain some representations of cellular compartments. At the most basic level, this includes an intra-
cellular and extracellular compartment, but in complex models, additional compartments such as the periplasm in
bacteria or mitochondria in eukaryotes are often included. PSAMM-Vis can show these compartments in the final
image through the use of the ——compartment argument. If the compartment information is not defined in the
model.yaml file, then, the command will attempt to automatically detect the organization of the compartments by ex-
amining the reaction equations in the model. However, this process cannot always accurately predict the compartment
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organization. To overcome this problem, it is suggested to define the compartment organization in the model.yaml file
like in the following example:

name: Ecoli_core_model
biomass: Biomass_Ecoli_core_w_GAM
default_flux_limit: 1000
extracellular: e
compartments:

- id: ¢

adjacent_to: e

name: Cytoplasm

id: e

adjacent_to: e

name: Extracellular

Once this information is added to the model.yaml file the following command can be used to generate an image that
shows the compartment information of the model:

(psamm-env) $ psamm-model vis —--compartment —--image png

The resulting file ‘reactions.dot.png’ will look like the following:
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In this image there are two compartments that are labeled with ‘Compartment: e’ and ‘Compartment: ¢’. The E. coli
core model is relatively small, meaning that compartment organization is simple, but vis command can handle more
complex models as well. For example, the following image was made using a small example model to show a more
complex compartments organization. To do this running the following command:

(psamm-env) $ psamm-model —--model ../additional_files/toy_model_cpt/toy_model.yaml
—Vvis —--image png —--compartment

The resulting network image “reactions.dot.png” looks like:

tutorial/06ccptToy.dot.png
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Visualize Reactions and Pathways of Interest

In some situations, it might be better to visualize a subset of a larger model so that smaller subsystems can be examined
in more detail. This can be done through the ——subset option. This option takes an input of a single column file,
where each line contains either a reaction ID or a metabolite ID. The whole file can contain only reaction IDs or
metabolite IDs and cannot be a mix of both.

To show the usage of this option, a subset of reactions involved in mannitol utilization pathway was visualized through
the following command:

(psamm-env) $ psamm-model vis —--subset ../additional_files/subset_mannitol_pathway.
—~tsv —-—-image png

The input file subset_mannitol_pathway looks like the following:

MANNIPTS
MANNI1PDEH
MADNNIDEH
MANNII1PPHOS
FRUKIN

This resulting image “reactions.dot.png” looks like the following:
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FRUKIN MANNIPTS MANNI1PDEH MANNIDEH MANNIPTS
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MANNIDEH
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This image only contains reactions listed in the subset file and any associated exchange reactions.

The other usage for using the subset argument is to provide a list of metabolite IDs (with compartment). This option
will generate an image containing all of the reactions that contain any of given metabolites in their equation. For
example, the following subset file could be used to generate a network image of all reactions that contain pyruvate.
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pyr_clcl
pyr_ele]

To use this subset to generate the pyruvate related subnetwork use the following command:

(psamm-env) $ psamm-model vis —--subset ../additional_files/subset_pyruvate_list.tsv —-—
—image png

This will generate an image like the following that only shows the reactions that contain pyruvate:

Highlight Reactions and Metabolites in the Network

The ——subset option can be used to show only a specific part of the network. When this is done, the context of
those reactions is often lost and it can be hard to tell where that pathway fits within the larger metabolism. A different
way to highlight a set of reactions without using the ——subset option is to change the color of a set of nodes through
the ——color option.

This option can be used to change the color of the reaction or metabolite nodes on the final network image, making
it easy to highlight certain pathways while still maintaining the larger metabolic context. This ——color option will
take a two-column file that contains reaction or metabolite IDs in the first column and hex color codes in the second
column. A color file that can be used to color all of the mannitol utilization pathway reactions purple would look like
the following:

MANNIPTS #d6c4f2
MANNI1PDEH #d6c4f2
MANNIDEH #d6c4f2
MANNI1PPHOS #d6c4f2
FRUKIN #d6c4f2

To use this file to generate an image of the larger network with the mannitol utilization pathway highlighted, use the
following command:

(psamm-env) $ psamm-model vis --color ../additional_files/color_mannitol_pathway.tsv -
——image png

The resulting image file should look like the following:

2.5. Reactant/Product Pair Prediction and Visualization Using FindPrimaryPairs 55




PSAMM Documentation, Release 1.1

Coloring of specific nodes like this can make it easy to locate or highlight specific pathways, especially in larger
models.

Note: Reaction nodes that represent multiple reactions won’t be recolored even if it contains one or more reactions
that are in input table for recolor.

Modify Node Labels in Network Images

By default, only the reaction IDs or metabolite IDs are shown on the nodes in final network images. These labels can be
modified to include any additional information defined in the compounds or reactions YAML file through the use of the
-—cpd-detail and ——rxn-detail options. These options are followed by a space separated list of metabolite
or reaction property names, such as id, name, equation, and formula. The required properties will present on the node
labels in network image. For example, for reaction ME1 (NAD-dependent malic enzyme), to show metabolite ID,
name and formula, as well as reaction ID, and equation, running the following command:

(psamm-env) $ psamm-model vis —--subset ../additional_files/detail_MEl.tsv —--cpd-
—~detail id name formula --rxn-detail id equation --image png

The image generated looks like this:
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mal_L_c[c]
L-Malate
C4H405

ME1
mal_L_c[c] + nad_cl[c] => co2_c[c] + nadh_c[c] + pyr_c[c]

co2_c[c]
CO2
CcOo2

pyr_cc]
Pyruvate
C3H303

nad_c|c]
Nicotinamide-adenine-dinucleotide
C21H26N7014P2

ME1
mal_L_c[c] + nad_cl[c] => co2_c[c] + nadh_c][c] + pyr_c[c]

nadh_c[c]
Nicotinamide-adenine-dinucleotide-reduced
C21H27N7014P2

Note: For these two options, if a required detail is not included in the model, that property will be skipped and not

shown on those nodes.

Visualize FBA or FVA

Performing various simulations of growth is made possible through methods such as FBA and FVA. Using the —-fba
or ——fva option, the flow of metabolites calculated by these methods can be visualized. When visualizing FBA, a tsv

file containing the reaction name and flux value is required. For example, the following command can be used:

(psamm-env) $ psamm-model vis —--fba

../additional_files/fba.tsv --image png

The image generated looks like this:
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If the FVA option is given, the file should contain the reaction name, and a lower and upper bound flux value that
would still allow the model to sustain the same objective function flux. To visualize the FVA results, you can use the
command:

(psamm-env) $ psamm-model vis —--fva ../additional_files/fva.tsv —--image png

The image generated looks like this:
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Reactions with a flux of zero is represented as a dotted edge and non-zero fluxes as solid. Meanwhile, the thickness
of the edges is proportional to the flux through the reaction. Visualizing these fluxes may help highlight reactions that
contribute the most to the objective.

Note: The -—fba and —-fva options cannot be used together.

Note: Fluxes less than the absolute value of 1e-5 will be considered as 0.

Other Visualization Options

Remove Specific Reactant Product Pairs

Large scale models may have some reactant/product pairs that occur many times in different reactions. These often
involve currency metabolites like ATP, ADP, NAD and NADH. Due to the large number of times these pairs occur
across the network, they may cause some parts of the graph to look messy. While making the condensed reaction
nodes can help with this problem, there may be cases where it would be better to hide these edges in the final result.
To do this the ~——hide-edges option can be used. This option takes a two-column file where each row contains two
metabolite IDs separated by tab, edges between them will be hidden in final network image.

For example, to hide the edges between ATP and ADP in the E. coli core model, the input file would look like the
following:

atp_clc] adp_clc]

Then the following command could be run to generate a network image that hides the edges between ATP and ADP:
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(psamm-env) $ psamm-model vis —-hide-edges ../additional_files/hide_edges_list.tsv ——
—limage png

When comparing this image to previous visualizations we can see that many edges between ATP and ADP have been
removed from the graph. While this might not make a huge difference on a small model like this, on larger models
this can help during the process of generating cleaner final images.

e
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